Properties

Label 4212.401
Modulus $4212$
Conductor $1053$
Order $108$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4212, base_ring=CyclotomicField(108))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,58,63]))
 
pari: [g,chi] = znchar(Mod(401,4212))
 

Basic properties

Modulus: \(4212\)
Conductor: \(1053\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(108\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1053}(401,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4212.ey

\(\chi_{4212}(41,\cdot)\) \(\chi_{4212}(137,\cdot)\) \(\chi_{4212}(401,\cdot)\) \(\chi_{4212}(461,\cdot)\) \(\chi_{4212}(509,\cdot)\) \(\chi_{4212}(605,\cdot)\) \(\chi_{4212}(869,\cdot)\) \(\chi_{4212}(929,\cdot)\) \(\chi_{4212}(977,\cdot)\) \(\chi_{4212}(1073,\cdot)\) \(\chi_{4212}(1337,\cdot)\) \(\chi_{4212}(1397,\cdot)\) \(\chi_{4212}(1445,\cdot)\) \(\chi_{4212}(1541,\cdot)\) \(\chi_{4212}(1805,\cdot)\) \(\chi_{4212}(1865,\cdot)\) \(\chi_{4212}(1913,\cdot)\) \(\chi_{4212}(2009,\cdot)\) \(\chi_{4212}(2273,\cdot)\) \(\chi_{4212}(2333,\cdot)\) \(\chi_{4212}(2381,\cdot)\) \(\chi_{4212}(2477,\cdot)\) \(\chi_{4212}(2741,\cdot)\) \(\chi_{4212}(2801,\cdot)\) \(\chi_{4212}(2849,\cdot)\) \(\chi_{4212}(2945,\cdot)\) \(\chi_{4212}(3209,\cdot)\) \(\chi_{4212}(3269,\cdot)\) \(\chi_{4212}(3317,\cdot)\) \(\chi_{4212}(3413,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{108})$
Fixed field: Number field defined by a degree 108 polynomial (not computed)

Values on generators

\((2107,3485,3889)\) → \((1,e\left(\frac{29}{54}\right),e\left(\frac{7}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 4212 }(401, a) \) \(1\)\(1\)\(e\left(\frac{65}{108}\right)\)\(e\left(\frac{1}{108}\right)\)\(e\left(\frac{7}{108}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{25}{36}\right)\)\(e\left(\frac{20}{27}\right)\)\(e\left(\frac{11}{54}\right)\)\(e\left(\frac{11}{54}\right)\)\(e\left(\frac{107}{108}\right)\)\(e\left(\frac{11}{18}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4212 }(401,a) \;\) at \(\;a = \) e.g. 2