Properties

Label 4212.4081
Modulus $4212$
Conductor $1053$
Order $54$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4212, base_ring=CyclotomicField(54))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,20,27]))
 
pari: [g,chi] = znchar(Mod(4081,4212))
 

Basic properties

Modulus: \(4212\)
Conductor: \(1053\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(54\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1053}(922,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4212.dx

\(\chi_{4212}(25,\cdot)\) \(\chi_{4212}(337,\cdot)\) \(\chi_{4212}(493,\cdot)\) \(\chi_{4212}(805,\cdot)\) \(\chi_{4212}(961,\cdot)\) \(\chi_{4212}(1273,\cdot)\) \(\chi_{4212}(1429,\cdot)\) \(\chi_{4212}(1741,\cdot)\) \(\chi_{4212}(1897,\cdot)\) \(\chi_{4212}(2209,\cdot)\) \(\chi_{4212}(2365,\cdot)\) \(\chi_{4212}(2677,\cdot)\) \(\chi_{4212}(2833,\cdot)\) \(\chi_{4212}(3145,\cdot)\) \(\chi_{4212}(3301,\cdot)\) \(\chi_{4212}(3613,\cdot)\) \(\chi_{4212}(3769,\cdot)\) \(\chi_{4212}(4081,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{27})\)
Fixed field: Number field defined by a degree 54 polynomial

Values on generators

\((2107,3485,3889)\) → \((1,e\left(\frac{10}{27}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 4212 }(4081, a) \) \(1\)\(1\)\(e\left(\frac{1}{54}\right)\)\(e\left(\frac{23}{54}\right)\)\(e\left(\frac{17}{54}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{2}{27}\right)\)\(e\left(\frac{1}{27}\right)\)\(e\left(\frac{19}{27}\right)\)\(e\left(\frac{49}{54}\right)\)\(e\left(\frac{4}{9}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4212 }(4081,a) \;\) at \(\;a = \) e.g. 2