Properties

Label 425.174
Modulus 425425
Conductor 8585
Order 44
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([2,3]))
 
pari: [g,chi] = znchar(Mod(174,425))
 

Basic properties

Modulus: 425425
Conductor: 8585
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 44
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ85(4,)\chi_{85}(4,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 425.j

χ425(149,)\chi_{425}(149,\cdot) χ425(174,)\chi_{425}(174,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(i)\mathbb{Q}(i)
Fixed field: 4.4.122825.1

Values on generators

(52,326)(52,326)(1,i)(-1,-i)

First values

aa 1-11122334466778899111112121313
χ425(174,a) \chi_{ 425 }(174, a) 111111ii11iii-i111-1iiii1-1
sage: chi.jacobi_sum(n)
 
χ425(174,a)   \chi_{ 425 }(174,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ425(174,))   \tau_{ a }( \chi_{ 425 }(174,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ425(174,),χ425(n,))   J(\chi_{ 425 }(174,·),\chi_{ 425 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ425(174,))  K(a,b,\chi_{ 425 }(174,·)) \; at   a,b=\; a,b = e.g. 1,2