Properties

Label 4256.1233
Modulus $4256$
Conductor $152$
Order $18$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4256, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,9,0,10]))
 
pari: [g,chi] = znchar(Mod(1233,4256))
 

Basic properties

Modulus: \(4256\)
Conductor: \(152\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(18\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{152}(93,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4256.gh

\(\chi_{4256}(785,\cdot)\) \(\chi_{4256}(1233,\cdot)\) \(\chi_{4256}(1681,\cdot)\) \(\chi_{4256}(1905,\cdot)\) \(\chi_{4256}(2353,\cdot)\) \(\chi_{4256}(3025,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: 18.18.38713951190154487490850848768.1

Values on generators

\((799,2661,3041,3137)\) → \((1,-1,1,e\left(\frac{5}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(23\)\(25\)\(27\)
\( \chi_{ 4256 }(1233, a) \) \(1\)\(1\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{1}{6}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4256 }(1233,a) \;\) at \(\;a = \) e.g. 2