Properties

Label 4256.1605
Modulus $4256$
Conductor $4256$
Order $72$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4256, base_ring=CyclotomicField(72))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,9,24,32]))
 
pari: [g,chi] = znchar(Mod(1605,4256))
 

Basic properties

Modulus: \(4256\)
Conductor: \(4256\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(72\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4256.jv

\(\chi_{4256}(541,\cdot)\) \(\chi_{4256}(613,\cdot)\) \(\chi_{4256}(709,\cdot)\) \(\chi_{4256}(821,\cdot)\) \(\chi_{4256}(1005,\cdot)\) \(\chi_{4256}(1061,\cdot)\) \(\chi_{4256}(1605,\cdot)\) \(\chi_{4256}(1677,\cdot)\) \(\chi_{4256}(1773,\cdot)\) \(\chi_{4256}(1885,\cdot)\) \(\chi_{4256}(2069,\cdot)\) \(\chi_{4256}(2125,\cdot)\) \(\chi_{4256}(2669,\cdot)\) \(\chi_{4256}(2741,\cdot)\) \(\chi_{4256}(2837,\cdot)\) \(\chi_{4256}(2949,\cdot)\) \(\chi_{4256}(3133,\cdot)\) \(\chi_{4256}(3189,\cdot)\) \(\chi_{4256}(3733,\cdot)\) \(\chi_{4256}(3805,\cdot)\) \(\chi_{4256}(3901,\cdot)\) \(\chi_{4256}(4013,\cdot)\) \(\chi_{4256}(4197,\cdot)\) \(\chi_{4256}(4253,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{72})$
Fixed field: Number field defined by a degree 72 polynomial

Values on generators

\((799,2661,3041,3137)\) → \((1,e\left(\frac{1}{8}\right),e\left(\frac{1}{3}\right),e\left(\frac{4}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(23\)\(25\)\(27\)
\( \chi_{ 4256 }(1605, a) \) \(1\)\(1\)\(e\left(\frac{35}{72}\right)\)\(e\left(\frac{65}{72}\right)\)\(e\left(\frac{35}{36}\right)\)\(e\left(\frac{7}{24}\right)\)\(e\left(\frac{7}{72}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{11}{36}\right)\)\(e\left(\frac{29}{36}\right)\)\(e\left(\frac{11}{24}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4256 }(1605,a) \;\) at \(\;a = \) e.g. 2