Properties

Label 4256.2311
Modulus $4256$
Conductor $304$
Order $12$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4256, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,3,0,10]))
 
pari: [g,chi] = znchar(Mod(2311,4256))
 

Basic properties

Modulus: \(4256\)
Conductor: \(304\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{304}(107,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4256.ei

\(\chi_{4256}(183,\cdot)\) \(\chi_{4256}(407,\cdot)\) \(\chi_{4256}(2311,\cdot)\) \(\chi_{4256}(2535,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.52665458133728799752192.1

Values on generators

\((799,2661,3041,3137)\) → \((-1,i,1,e\left(\frac{5}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(23\)\(25\)\(27\)
\( \chi_{ 4256 }(2311, a) \) \(1\)\(1\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{1}{6}\right)\)\(-i\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{6}\right)\)\(i\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4256 }(2311,a) \;\) at \(\;a = \) e.g. 2