Properties

Label 4256.2781
Modulus $4256$
Conductor $4256$
Order $24$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4256, base_ring=CyclotomicField(24))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,9,8,8]))
 
pari: [g,chi] = znchar(Mod(2781,4256))
 

Basic properties

Modulus: \(4256\)
Conductor: \(4256\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(24\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4256.hr

\(\chi_{4256}(277,\cdot)\) \(\chi_{4256}(653,\cdot)\) \(\chi_{4256}(1341,\cdot)\) \(\chi_{4256}(1717,\cdot)\) \(\chi_{4256}(2405,\cdot)\) \(\chi_{4256}(2781,\cdot)\) \(\chi_{4256}(3469,\cdot)\) \(\chi_{4256}(3845,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: Number field defined by a degree 24 polynomial

Values on generators

\((799,2661,3041,3137)\) → \((1,e\left(\frac{3}{8}\right),e\left(\frac{1}{3}\right),e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(23\)\(25\)\(27\)
\( \chi_{ 4256 }(2781, a) \) \(1\)\(1\)\(e\left(\frac{19}{24}\right)\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{5}{24}\right)\)\(e\left(\frac{7}{24}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{7}{12}\right)\)\(-i\)\(e\left(\frac{3}{8}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4256 }(2781,a) \;\) at \(\;a = \) e.g. 2