sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4256, base_ring=CyclotomicField(24))
M = H._module
chi = DirichletCharacter(H, M([0,9,8,8]))
pari:[g,chi] = znchar(Mod(2781,4256))
Modulus: | 4256 | |
Conductor: | 4256 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 24 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ4256(277,⋅)
χ4256(653,⋅)
χ4256(1341,⋅)
χ4256(1717,⋅)
χ4256(2405,⋅)
χ4256(2781,⋅)
χ4256(3469,⋅)
χ4256(3845,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(799,2661,3041,3137) → (1,e(83),e(31),e(31))
a |
−1 | 1 | 3 | 5 | 9 | 11 | 13 | 15 | 17 | 23 | 25 | 27 |
χ4256(2781,a) |
1 | 1 | e(2419) | e(83) | e(127) | e(245) | e(247) | e(61) | e(61) | e(127) | −i | e(83) |
sage:chi.jacobi_sum(n)