Properties

Label 4256.705
Modulus 42564256
Conductor 133133
Order 1818
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4256, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([0,0,15,1]))
 
Copy content pari:[g,chi] = znchar(Mod(705,4256))
 

Basic properties

Modulus: 42564256
Conductor: 133133
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 1818
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ133(40,)\chi_{133}(40,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4256.gn

χ4256(33,)\chi_{4256}(33,\cdot) χ4256(129,)\chi_{4256}(129,\cdot) χ4256(705,)\chi_{4256}(705,\cdot) χ4256(1473,)\chi_{4256}(1473,\cdot) χ4256(2369,)\chi_{4256}(2369,\cdot) χ4256(3841,)\chi_{4256}(3841,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: 18.18.26018473705616588670034125883291477.1

Values on generators

(799,2661,3041,3137)(799,2661,3041,3137)(1,1,e(56),e(118))(1,1,e\left(\frac{5}{6}\right),e\left(\frac{1}{18}\right))

First values

aa 1-1113355991111131315151717232325252727
χ4256(705,a) \chi_{ 4256 }(705, a) 1111e(59)e\left(\frac{5}{9}\right)e(118)e\left(\frac{1}{18}\right)e(19)e\left(\frac{1}{9}\right)11e(79)e\left(\frac{7}{9}\right)e(1118)e\left(\frac{11}{18}\right)e(718)e\left(\frac{7}{18}\right)e(79)e\left(\frac{7}{9}\right)e(19)e\left(\frac{1}{9}\right)e(23)e\left(\frac{2}{3}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ4256(705,a)   \chi_{ 4256 }(705,a) \; at   a=\;a = e.g. 2