Properties

Label 4256.705
Modulus $4256$
Conductor $133$
Order $18$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4256, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,15,1]))
 
pari: [g,chi] = znchar(Mod(705,4256))
 

Basic properties

Modulus: \(4256\)
Conductor: \(133\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(18\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{133}(40,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4256.gn

\(\chi_{4256}(33,\cdot)\) \(\chi_{4256}(129,\cdot)\) \(\chi_{4256}(705,\cdot)\) \(\chi_{4256}(1473,\cdot)\) \(\chi_{4256}(2369,\cdot)\) \(\chi_{4256}(3841,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: 18.18.26018473705616588670034125883291477.1

Values on generators

\((799,2661,3041,3137)\) → \((1,1,e\left(\frac{5}{6}\right),e\left(\frac{1}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(23\)\(25\)\(27\)
\( \chi_{ 4256 }(705, a) \) \(1\)\(1\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{1}{9}\right)\)\(1\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{2}{3}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4256 }(705,a) \;\) at \(\;a = \) e.g. 2