from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4256, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([9,0,12,13]))
pari: [g,chi] = znchar(Mod(991,4256))
Basic properties
Modulus: | \(4256\) | |
Conductor: | \(532\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(18\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{532}(459,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 4256.ge
\(\chi_{4256}(991,\cdot)\) \(\chi_{4256}(1439,\cdot)\) \(\chi_{4256}(1535,\cdot)\) \(\chi_{4256}(2111,\cdot)\) \(\chi_{4256}(2879,\cdot)\) \(\chi_{4256}(3775,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{9})\) |
Fixed field: | 18.18.19885092627070422799759259170698428416.1 |
Values on generators
\((799,2661,3041,3137)\) → \((-1,1,e\left(\frac{2}{3}\right),e\left(\frac{13}{18}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(23\) | \(25\) | \(27\) |
\( \chi_{ 4256 }(991, a) \) | \(1\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) |
sage: chi.jacobi_sum(n)