Properties

Label 4284.2983
Modulus $4284$
Conductor $612$
Order $24$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4284, base_ring=CyclotomicField(24))
 
M = H._module
 
chi = DirichletCharacter(H, M([12,8,0,15]))
 
pari: [g,chi] = znchar(Mod(2983,4284))
 

Basic properties

Modulus: \(4284\)
Conductor: \(612\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(24\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{612}(535,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4284.ga

\(\chi_{4284}(43,\cdot)\) \(\chi_{4284}(967,\cdot)\) \(\chi_{4284}(1471,\cdot)\) \(\chi_{4284}(1555,\cdot)\) \(\chi_{4284}(2059,\cdot)\) \(\chi_{4284}(2983,\cdot)\) \(\chi_{4284}(3487,\cdot)\) \(\chi_{4284}(3823,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: Number field defined by a degree 24 polynomial

Values on generators

\((2143,3809,1837,1261)\) → \((-1,e\left(\frac{1}{3}\right),1,e\left(\frac{5}{8}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 4284 }(2983, a) \) \(-1\)\(1\)\(e\left(\frac{19}{24}\right)\)\(e\left(\frac{5}{24}\right)\)\(e\left(\frac{1}{6}\right)\)\(i\)\(e\left(\frac{13}{24}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{11}{24}\right)\)\(e\left(\frac{19}{24}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{13}{24}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4284 }(2983,a) \;\) at \(\;a = \) e.g. 2