Properties

Label 4284.61
Modulus $4284$
Conductor $1071$
Order $48$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4284, base_ring=CyclotomicField(48))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,32,40,9]))
 
pari: [g,chi] = znchar(Mod(61,4284))
 

Basic properties

Modulus: \(4284\)
Conductor: \(1071\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(48\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1071}(61,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4284.hm

\(\chi_{4284}(61,\cdot)\) \(\chi_{4284}(313,\cdot)\) \(\chi_{4284}(913,\cdot)\) \(\chi_{4284}(1321,\cdot)\) \(\chi_{4284}(1417,\cdot)\) \(\chi_{4284}(1669,\cdot)\) \(\chi_{4284}(1825,\cdot)\) \(\chi_{4284}(2077,\cdot)\) \(\chi_{4284}(2173,\cdot)\) \(\chi_{4284}(2425,\cdot)\) \(\chi_{4284}(2581,\cdot)\) \(\chi_{4284}(2833,\cdot)\) \(\chi_{4284}(2929,\cdot)\) \(\chi_{4284}(3337,\cdot)\) \(\chi_{4284}(3937,\cdot)\) \(\chi_{4284}(4189,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{48})\)
Fixed field: Number field defined by a degree 48 polynomial

Values on generators

\((2143,3809,1837,1261)\) → \((1,e\left(\frac{2}{3}\right),e\left(\frac{5}{6}\right),e\left(\frac{3}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 4284 }(61, a) \) \(1\)\(1\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{5}{16}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{19}{24}\right)\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{5}{48}\right)\)\(e\left(\frac{41}{48}\right)\)\(e\left(\frac{41}{48}\right)\)\(e\left(\frac{43}{48}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4284 }(61,a) \;\) at \(\;a = \) e.g. 2