sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(432, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([18,27,26]))
pari:[g,chi] = znchar(Mod(227,432))
Modulus: | 432 | |
Conductor: | 432 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 36 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ432(11,⋅)
χ432(59,⋅)
χ432(83,⋅)
χ432(131,⋅)
χ432(155,⋅)
χ432(203,⋅)
χ432(227,⋅)
χ432(275,⋅)
χ432(299,⋅)
χ432(347,⋅)
χ432(371,⋅)
χ432(419,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(271,325,353) → (−1,−i,e(1813))
a |
−1 | 1 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 25 | 29 | 31 |
χ432(227,a) |
1 | 1 | e(3613) | e(95) | e(3623) | e(361) | e(65) | e(125) | e(1817) | e(1813) | e(3635) | e(1817) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)