Properties

Label 4334.69
Modulus 43344334
Conductor 21672167
Order 140140
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4334, base_ring=CyclotomicField(140))
 
M = H._module
 
chi = DirichletCharacter(H, M([112,75]))
 
pari: [g,chi] = znchar(Mod(69,4334))
 

Basic properties

Modulus: 43344334
Conductor: 21672167
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 140140
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ2167(69,)\chi_{2167}(69,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4334.ba

χ4334(69,)\chi_{4334}(69,\cdot) χ4334(113,)\chi_{4334}(113,\cdot) χ4334(317,)\chi_{4334}(317,\cdot) χ4334(471,)\chi_{4334}(471,\cdot) χ4334(675,)\chi_{4334}(675,\cdot) χ4334(719,)\chi_{4334}(719,\cdot) χ4334(917,)\chi_{4334}(917,\cdot) χ4334(1005,)\chi_{4334}(1005,\cdot) χ4334(1105,)\chi_{4334}(1105,\cdot) χ4334(1259,)\chi_{4334}(1259,\cdot) χ4334(1269,)\chi_{4334}(1269,\cdot) χ4334(1489,)\chi_{4334}(1489,\cdot) χ4334(1499,)\chi_{4334}(1499,\cdot) χ4334(1653,)\chi_{4334}(1653,\cdot) χ4334(1753,)\chi_{4334}(1753,\cdot) χ4334(1841,)\chi_{4334}(1841,\cdot) χ4334(1857,)\chi_{4334}(1857,\cdot) χ4334(1901,)\chi_{4334}(1901,\cdot) χ4334(2039,)\chi_{4334}(2039,\cdot) χ4334(2083,)\chi_{4334}(2083,\cdot) χ4334(2099,)\chi_{4334}(2099,\cdot) χ4334(2187,)\chi_{4334}(2187,\cdot) χ4334(2451,)\chi_{4334}(2451,\cdot) χ4334(2645,)\chi_{4334}(2645,\cdot) χ4334(2671,)\chi_{4334}(2671,\cdot) χ4334(2689,)\chi_{4334}(2689,\cdot) χ4334(2887,)\chi_{4334}(2887,\cdot) χ4334(2935,)\chi_{4334}(2935,\cdot) χ4334(2975,)\chi_{4334}(2975,\cdot) χ4334(3023,)\chi_{4334}(3023,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ140)\Q(\zeta_{140})
Fixed field: Number field defined by a degree 140 polynomial (not computed)

Values on generators

(1971,199)(1971,199)(e(45),e(1528))(e\left(\frac{4}{5}\right),e\left(\frac{15}{28}\right))

First values

aa 1-11133557799131315151717191921212323
χ4334(69,a) \chi_{ 4334 }(69, a) 1-111e(51140)e\left(\frac{51}{140}\right)e(123140)e\left(\frac{123}{140}\right)e(5770)e\left(\frac{57}{70}\right)e(5170)e\left(\frac{51}{70}\right)e(27140)e\left(\frac{27}{140}\right)e(1770)e\left(\frac{17}{70}\right)e(53140)e\left(\frac{53}{140}\right)e(910)e\left(\frac{9}{10}\right)e(528)e\left(\frac{5}{28}\right)e(27)e\left(\frac{2}{7}\right)
sage: chi.jacobi_sum(n)
 
χ4334(69,a)   \chi_{ 4334 }(69,a) \; at   a=\;a = e.g. 2