from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4334, base_ring=CyclotomicField(140))
M = H._module
chi = DirichletCharacter(H, M([112,75]))
pari: [g,chi] = znchar(Mod(69,4334))
χ4334(69,⋅)
χ4334(113,⋅)
χ4334(317,⋅)
χ4334(471,⋅)
χ4334(675,⋅)
χ4334(719,⋅)
χ4334(917,⋅)
χ4334(1005,⋅)
χ4334(1105,⋅)
χ4334(1259,⋅)
χ4334(1269,⋅)
χ4334(1489,⋅)
χ4334(1499,⋅)
χ4334(1653,⋅)
χ4334(1753,⋅)
χ4334(1841,⋅)
χ4334(1857,⋅)
χ4334(1901,⋅)
χ4334(2039,⋅)
χ4334(2083,⋅)
χ4334(2099,⋅)
χ4334(2187,⋅)
χ4334(2451,⋅)
χ4334(2645,⋅)
χ4334(2671,⋅)
χ4334(2689,⋅)
χ4334(2887,⋅)
χ4334(2935,⋅)
χ4334(2975,⋅)
χ4334(3023,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1971,199) → (e(54),e(2815))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 13 | 15 | 17 | 19 | 21 | 23 |
χ4334(69,a) |
−1 | 1 | e(14051) | e(140123) | e(7057) | e(7051) | e(14027) | e(7017) | e(14053) | e(109) | e(285) | e(72) |