Properties

Label 4368.1681
Modulus 43684368
Conductor 1313
Order 66
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4368, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,0,0,1]))
 
pari: [g,chi] = znchar(Mod(1681,4368))
 

Basic properties

Modulus: 43684368
Conductor: 1313
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 66
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ13(4,)\chi_{13}(4,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4368.do

χ4368(673,)\chi_{4368}(673,\cdot) χ4368(1681,)\chi_{4368}(1681,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: Q(ζ13)+\Q(\zeta_{13})^+

Values on generators

(3823,1093,1457,1249,2017)(3823,1093,1457,1249,2017)(1,1,1,1,e(16))(1,1,1,1,e\left(\frac{1}{6}\right))

First values

aa 1-11155111117171919232325252929313137374141
χ4368(1681,a) \chi_{ 4368 }(1681, a) 11111-1e(16)e\left(\frac{1}{6}\right)e(13)e\left(\frac{1}{3}\right)e(56)e\left(\frac{5}{6}\right)e(23)e\left(\frac{2}{3}\right)11e(23)e\left(\frac{2}{3}\right)1-1e(16)e\left(\frac{1}{6}\right)e(16)e\left(\frac{1}{6}\right)
sage: chi.jacobi_sum(n)
 
χ4368(1681,a)   \chi_{ 4368 }(1681,a) \; at   a=\;a = e.g. 2