Properties

Label 4368.3301
Modulus 43684368
Conductor 14561456
Order 1212
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4368, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,3,0,8,6]))
 
pari: [g,chi] = znchar(Mod(3301,4368))
 

Basic properties

Modulus: 43684368
Conductor: 14561456
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ1456(389,)\chi_{1456}(389,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4368.ln

χ4368(1117,)\chi_{4368}(1117,\cdot) χ4368(2053,)\chi_{4368}(2053,\cdot) χ4368(3301,)\chi_{4368}(3301,\cdot) χ4368(4237,)\chi_{4368}(4237,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.12.239020026860167472611328.1

Values on generators

(3823,1093,1457,1249,2017)(3823,1093,1457,1249,2017)(1,i,1,e(23),1)(1,i,1,e\left(\frac{2}{3}\right),-1)

First values

aa 1-11155111117171919232325252929313137374141
χ4368(3301,a) \chi_{ 4368 }(3301, a) 1111e(112)e\left(\frac{1}{12}\right)e(512)e\left(\frac{5}{12}\right)e(23)e\left(\frac{2}{3}\right)e(712)e\left(\frac{7}{12}\right)e(56)e\left(\frac{5}{6}\right)e(16)e\left(\frac{1}{6}\right)i-ie(16)e\left(\frac{1}{6}\right)e(112)e\left(\frac{1}{12}\right)11
sage: chi.jacobi_sum(n)
 
χ4368(3301,a)   \chi_{ 4368 }(3301,a) \; at   a=\;a = e.g. 2