Properties

Label 4368.3865
Modulus 43684368
Conductor 104104
Order 66
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4368, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,3,0,0,1]))
 
pari: [g,chi] = znchar(Mod(3865,4368))
 

Basic properties

Modulus: 43684368
Conductor: 104104
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 66
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ104(69,)\chi_{104}(69,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4368.hm

χ4368(2857,)\chi_{4368}(2857,\cdot) χ4368(3865,)\chi_{4368}(3865,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: 6.6.190102016.1

Values on generators

(3823,1093,1457,1249,2017)(3823,1093,1457,1249,2017)(1,1,1,1,e(16))(1,-1,1,1,e\left(\frac{1}{6}\right))

First values

aa 1-11155111117171919232325252929313137374141
χ4368(3865,a) \chi_{ 4368 }(3865, a) 111111e(23)e\left(\frac{2}{3}\right)e(13)e\left(\frac{1}{3}\right)e(13)e\left(\frac{1}{3}\right)e(23)e\left(\frac{2}{3}\right)11e(16)e\left(\frac{1}{6}\right)1-1e(23)e\left(\frac{2}{3}\right)e(16)e\left(\frac{1}{6}\right)
sage: chi.jacobi_sum(n)
 
χ4368(3865,a)   \chi_{ 4368 }(3865,a) \; at   a=\;a = e.g. 2