Properties

Label 4368.727
Modulus 43684368
Conductor 728728
Order 22
Real yes
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4368, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([1,1,0,1,1]))
 
pari: [g,chi] = znchar(Mod(727,4368))
 

Basic properties

Modulus: 43684368
Conductor: 728728
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 22
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from χ728(363,)\chi_{728}(363,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4368.b

χ4368(727,)\chi_{4368}(727,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q\Q
Fixed field: Q(182)\Q(\sqrt{182})

Values on generators

(3823,1093,1457,1249,2017)(3823,1093,1457,1249,2017)(1,1,1,1,1)(-1,-1,1,-1,-1)

First values

aa 1-11155111117171919232325252929313137374141
χ4368(727,a) \chi_{ 4368 }(727, a) 11111-11-11-1111-1111-11-11111
sage: chi.jacobi_sum(n)
 
χ4368(727,a)   \chi_{ 4368 }(727,a) \; at   a=\;a = e.g. 2