Properties

Label 4368.ck
Modulus $4368$
Conductor $208$
Order $4$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4368, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,1,0,0,2]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(1429,4368))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4368\)
Conductor: \(208\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(4\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 208.p
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: 4.4.346112.1

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(11\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{4368}(1429,\cdot)\) \(1\) \(1\) \(-i\) \(-i\) \(1\) \(i\) \(-1\) \(-1\) \(-i\) \(-1\) \(-i\) \(1\)
\(\chi_{4368}(3613,\cdot)\) \(1\) \(1\) \(i\) \(i\) \(1\) \(-i\) \(-1\) \(-1\) \(i\) \(-1\) \(i\) \(1\)