Properties

Label 4368.e
Modulus $4368$
Conductor $28$
Order $2$
Real yes
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4368, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([1,0,0,1,0]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(2575,4368))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4368\)
Conductor: \(28\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(2\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from 28.d
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{7}) \)

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(11\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{4368}(2575,\cdot)\) \(1\) \(1\) \(-1\) \(-1\) \(-1\) \(1\) \(-1\) \(1\) \(1\) \(1\) \(1\) \(-1\)