Properties

Label 4368.mw
Modulus 43684368
Conductor 10921092
Order 1212
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4368, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,0,6,6,5]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(1007,4368))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 43684368
Conductor: 10921092
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 1092.eh
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.12.629582418765353043873792.1

Characters in Galois orbit

Character 1-1 11 55 1111 1717 1919 2323 2525 2929 3131 3737 4141
χ4368(1007,)\chi_{4368}(1007,\cdot) 11 11 i-i e(1112)e\left(\frac{11}{12}\right) e(56)e\left(\frac{5}{6}\right) e(112)e\left(\frac{1}{12}\right) e(16)e\left(\frac{1}{6}\right) 1-1 e(16)e\left(\frac{1}{6}\right) i-i e(1112)e\left(\frac{11}{12}\right) e(512)e\left(\frac{5}{12}\right)
χ4368(1679,)\chi_{4368}(1679,\cdot) 11 11 i-i e(712)e\left(\frac{7}{12}\right) e(16)e\left(\frac{1}{6}\right) e(512)e\left(\frac{5}{12}\right) e(56)e\left(\frac{5}{6}\right) 1-1 e(56)e\left(\frac{5}{6}\right) i-i e(712)e\left(\frac{7}{12}\right) e(112)e\left(\frac{1}{12}\right)
χ4368(2351,)\chi_{4368}(2351,\cdot) 11 11 ii e(112)e\left(\frac{1}{12}\right) e(16)e\left(\frac{1}{6}\right) e(1112)e\left(\frac{11}{12}\right) e(56)e\left(\frac{5}{6}\right) 1-1 e(56)e\left(\frac{5}{6}\right) ii e(112)e\left(\frac{1}{12}\right) e(712)e\left(\frac{7}{12}\right)
χ4368(3023,)\chi_{4368}(3023,\cdot) 11 11 ii e(512)e\left(\frac{5}{12}\right) e(56)e\left(\frac{5}{6}\right) e(712)e\left(\frac{7}{12}\right) e(16)e\left(\frac{1}{6}\right) 1-1 e(16)e\left(\frac{1}{6}\right) ii e(512)e\left(\frac{5}{12}\right) e(1112)e\left(\frac{11}{12}\right)