from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(43904, base_ring=CyclotomicField(96))
M = H._module
chi = DirichletCharacter(H, M([48,69,80]))
pari: [g,chi] = znchar(Mod(19,43904))
χ43904(19,⋅)
χ43904(1011,⋅)
χ43904(2763,⋅)
χ43904(3755,⋅)
χ43904(5507,⋅)
χ43904(6499,⋅)
χ43904(8251,⋅)
χ43904(9243,⋅)
χ43904(10995,⋅)
χ43904(11987,⋅)
χ43904(13739,⋅)
χ43904(14731,⋅)
χ43904(16483,⋅)
χ43904(17475,⋅)
χ43904(19227,⋅)
χ43904(20219,⋅)
χ43904(21971,⋅)
χ43904(22963,⋅)
χ43904(24715,⋅)
χ43904(25707,⋅)
χ43904(27459,⋅)
χ43904(28451,⋅)
χ43904(30203,⋅)
χ43904(31195,⋅)
χ43904(32947,⋅)
χ43904(33939,⋅)
χ43904(35691,⋅)
χ43904(36683,⋅)
χ43904(38435,⋅)
χ43904(39427,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(17151,9605,17153) → (−1,e(3223),e(65))
a |
−1 | 1 | 3 | 5 | 9 | 11 | 13 | 15 | 17 | 19 | 23 | 25 |
χ43904(19,a) |
1 | 1 | e(9647) | e(9685) | e(4847) | e(9689) | e(329) | e(83) | e(2423) | e(9619) | e(4811) | e(4837) |