Properties

Label 43904.19
Modulus 4390443904
Conductor 896896
Order 9696
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(43904, base_ring=CyclotomicField(96))
 
M = H._module
 
chi = DirichletCharacter(H, M([48,69,80]))
 
pari: [g,chi] = znchar(Mod(19,43904))
 

Basic properties

Modulus: 4390443904
Conductor: 896896
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 9696
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ896(19,)\chi_{896}(19,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 43904.cw

χ43904(19,)\chi_{43904}(19,\cdot) χ43904(1011,)\chi_{43904}(1011,\cdot) χ43904(2763,)\chi_{43904}(2763,\cdot) χ43904(3755,)\chi_{43904}(3755,\cdot) χ43904(5507,)\chi_{43904}(5507,\cdot) χ43904(6499,)\chi_{43904}(6499,\cdot) χ43904(8251,)\chi_{43904}(8251,\cdot) χ43904(9243,)\chi_{43904}(9243,\cdot) χ43904(10995,)\chi_{43904}(10995,\cdot) χ43904(11987,)\chi_{43904}(11987,\cdot) χ43904(13739,)\chi_{43904}(13739,\cdot) χ43904(14731,)\chi_{43904}(14731,\cdot) χ43904(16483,)\chi_{43904}(16483,\cdot) χ43904(17475,)\chi_{43904}(17475,\cdot) χ43904(19227,)\chi_{43904}(19227,\cdot) χ43904(20219,)\chi_{43904}(20219,\cdot) χ43904(21971,)\chi_{43904}(21971,\cdot) χ43904(22963,)\chi_{43904}(22963,\cdot) χ43904(24715,)\chi_{43904}(24715,\cdot) χ43904(25707,)\chi_{43904}(25707,\cdot) χ43904(27459,)\chi_{43904}(27459,\cdot) χ43904(28451,)\chi_{43904}(28451,\cdot) χ43904(30203,)\chi_{43904}(30203,\cdot) χ43904(31195,)\chi_{43904}(31195,\cdot) χ43904(32947,)\chi_{43904}(32947,\cdot) χ43904(33939,)\chi_{43904}(33939,\cdot) χ43904(35691,)\chi_{43904}(35691,\cdot) χ43904(36683,)\chi_{43904}(36683,\cdot) χ43904(38435,)\chi_{43904}(38435,\cdot) χ43904(39427,)\chi_{43904}(39427,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ96)\Q(\zeta_{96})
Fixed field: Number field defined by a degree 96 polynomial

Values on generators

(17151,9605,17153)(17151,9605,17153)(1,e(2332),e(56))(-1,e\left(\frac{23}{32}\right),e\left(\frac{5}{6}\right))

First values

aa 1-1113355991111131315151717191923232525
χ43904(19,a) \chi_{ 43904 }(19, a) 1111e(4796)e\left(\frac{47}{96}\right)e(8596)e\left(\frac{85}{96}\right)e(4748)e\left(\frac{47}{48}\right)e(8996)e\left(\frac{89}{96}\right)e(932)e\left(\frac{9}{32}\right)e(38)e\left(\frac{3}{8}\right)e(2324)e\left(\frac{23}{24}\right)e(1996)e\left(\frac{19}{96}\right)e(1148)e\left(\frac{11}{48}\right)e(3748)e\left(\frac{37}{48}\right)
sage: chi.jacobi_sum(n)
 
χ43904(19,a)   \chi_{ 43904 }(19,a) \; at   a=\;a = e.g. 2