from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(43904, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([42,21,38]))
pari: [g,chi] = znchar(Mod(31,43904))
χ43904(31,⋅)
χ43904(607,⋅)
χ43904(3167,⋅)
χ43904(3743,⋅)
χ43904(6303,⋅)
χ43904(9439,⋅)
χ43904(10015,⋅)
χ43904(12575,⋅)
χ43904(13151,⋅)
χ43904(15711,⋅)
χ43904(16287,⋅)
χ43904(19423,⋅)
χ43904(21983,⋅)
χ43904(22559,⋅)
χ43904(25119,⋅)
χ43904(25695,⋅)
χ43904(28255,⋅)
χ43904(31391,⋅)
χ43904(31967,⋅)
χ43904(34527,⋅)
χ43904(35103,⋅)
χ43904(37663,⋅)
χ43904(38239,⋅)
χ43904(41375,⋅)
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(17151,9605,17153) → (−1,i,e(4219))
a |
−1 | 1 | 3 | 5 | 9 | 11 | 13 | 15 | 17 | 19 | 23 | 25 |
χ43904(31,a) |
1 | 1 | e(8459) | e(8431) | e(4217) | e(8471) | e(2819) | e(141) | e(4213) | e(121) | e(214) | e(4231) |