Properties

Label 43904.31
Modulus $43904$
Conductor $784$
Order $84$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(43904, base_ring=CyclotomicField(84))
 
M = H._module
 
chi = DirichletCharacter(H, M([42,21,38]))
 
pari: [g,chi] = znchar(Mod(31,43904))
 

Basic properties

Modulus: \(43904\)
Conductor: \(784\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(84\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{784}(283,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 43904.ct

\(\chi_{43904}(31,\cdot)\) \(\chi_{43904}(607,\cdot)\) \(\chi_{43904}(3167,\cdot)\) \(\chi_{43904}(3743,\cdot)\) \(\chi_{43904}(6303,\cdot)\) \(\chi_{43904}(9439,\cdot)\) \(\chi_{43904}(10015,\cdot)\) \(\chi_{43904}(12575,\cdot)\) \(\chi_{43904}(13151,\cdot)\) \(\chi_{43904}(15711,\cdot)\) \(\chi_{43904}(16287,\cdot)\) \(\chi_{43904}(19423,\cdot)\) \(\chi_{43904}(21983,\cdot)\) \(\chi_{43904}(22559,\cdot)\) \(\chi_{43904}(25119,\cdot)\) \(\chi_{43904}(25695,\cdot)\) \(\chi_{43904}(28255,\cdot)\) \(\chi_{43904}(31391,\cdot)\) \(\chi_{43904}(31967,\cdot)\) \(\chi_{43904}(34527,\cdot)\) \(\chi_{43904}(35103,\cdot)\) \(\chi_{43904}(37663,\cdot)\) \(\chi_{43904}(38239,\cdot)\) \(\chi_{43904}(41375,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{84})$
Fixed field: Number field defined by a degree 84 polynomial

Values on generators

\((17151,9605,17153)\) → \((-1,i,e\left(\frac{19}{42}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(23\)\(25\)
\( \chi_{ 43904 }(31, a) \) \(1\)\(1\)\(e\left(\frac{59}{84}\right)\)\(e\left(\frac{31}{84}\right)\)\(e\left(\frac{17}{42}\right)\)\(e\left(\frac{71}{84}\right)\)\(e\left(\frac{19}{28}\right)\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{13}{42}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{4}{21}\right)\)\(e\left(\frac{31}{42}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 43904 }(31,a) \;\) at \(\;a = \) e.g. 2