Properties

Label 4400.87
Modulus $4400$
Conductor $2200$
Order $20$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4400, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,10,9,10]))
 
pari: [g,chi] = znchar(Mod(87,4400))
 

Basic properties

Modulus: \(4400\)
Conductor: \(2200\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(20\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2200}(1187,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4400.hu

\(\chi_{4400}(87,\cdot)\) \(\chi_{4400}(263,\cdot)\) \(\chi_{4400}(967,\cdot)\) \(\chi_{4400}(1847,\cdot)\) \(\chi_{4400}(2023,\cdot)\) \(\chi_{4400}(2727,\cdot)\) \(\chi_{4400}(2903,\cdot)\) \(\chi_{4400}(3783,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: 20.0.81054451878125000000000000000000000000000000.1

Values on generators

\((2751,3301,177,1201)\) → \((-1,-1,e\left(\frac{9}{20}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 4400 }(87, a) \) \(-1\)\(1\)\(e\left(\frac{3}{20}\right)\)\(i\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{7}{20}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{9}{10}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4400 }(87,a) \;\) at \(\;a = \) e.g. 2