Properties

Label 4400.fz
Modulus $4400$
Conductor $4400$
Order $20$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4400, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,15,7,16]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(3,4400))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4400\)
Conductor: \(4400\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(20\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: Number field defined by a degree 20 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(13\) \(17\) \(19\) \(21\) \(23\) \(27\) \(29\)
\(\chi_{4400}(3,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{7}{10}\right)\) \(-i\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{11}{20}\right)\)
\(\chi_{4400}(27,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{10}\right)\) \(i\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{13}{20}\right)\)
\(\chi_{4400}(163,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{9}{10}\right)\) \(-i\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{7}{20}\right)\)
\(\chi_{4400}(1147,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{7}{10}\right)\) \(i\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{20}\right)\)
\(\chi_{4400}(1467,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{3}{10}\right)\) \(i\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{9}{20}\right)\)
\(\chi_{4400}(1523,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{10}\right)\) \(-i\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{20}\right)\)
\(\chi_{4400}(2083,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{3}{10}\right)\) \(-i\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{19}{20}\right)\)
\(\chi_{4400}(2187,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{9}{10}\right)\) \(i\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{17}{20}\right)\)