sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(441, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([7,9]))
pari:[g,chi] = znchar(Mod(251,441))
χ441(62,⋅)
χ441(125,⋅)
χ441(188,⋅)
χ441(251,⋅)
χ441(314,⋅)
χ441(377,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(344,199) → (−1,e(149))
a |
−1 | 1 | 2 | 4 | 5 | 8 | 10 | 11 | 13 | 16 | 17 | 19 |
χ441(251,a) |
1 | 1 | e(143) | e(73) | e(71) | e(149) | e(145) | e(143) | e(143) | e(76) | e(74) | −1 |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)