Properties

Label 441.278
Modulus $441$
Conductor $147$
Order $42$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(441, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([21,41]))
 
pari: [g,chi] = znchar(Mod(278,441))
 

Basic properties

Modulus: \(441\)
Conductor: \(147\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(42\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{147}(131,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 441.bg

\(\chi_{441}(17,\cdot)\) \(\chi_{441}(26,\cdot)\) \(\chi_{441}(89,\cdot)\) \(\chi_{441}(143,\cdot)\) \(\chi_{441}(152,\cdot)\) \(\chi_{441}(206,\cdot)\) \(\chi_{441}(269,\cdot)\) \(\chi_{441}(278,\cdot)\) \(\chi_{441}(332,\cdot)\) \(\chi_{441}(341,\cdot)\) \(\chi_{441}(395,\cdot)\) \(\chi_{441}(404,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: \(\Q(\zeta_{147})^+\)

Values on generators

\((344,199)\) → \((-1,e\left(\frac{41}{42}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(19\)
\( \chi_{ 441 }(278, a) \) \(1\)\(1\)\(e\left(\frac{37}{42}\right)\)\(e\left(\frac{16}{21}\right)\)\(e\left(\frac{17}{21}\right)\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{29}{42}\right)\)\(e\left(\frac{23}{42}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{11}{21}\right)\)\(e\left(\frac{19}{21}\right)\)\(e\left(\frac{1}{6}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 441 }(278,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 441 }(278,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 441 }(278,·),\chi_{ 441 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 441 }(278,·)) \;\) at \(\; a,b = \) e.g. 1,2