from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(448, base_ring=CyclotomicField(16))
M = H._module
chi = DirichletCharacter(H, M([8,3,8]))
pari: [g,chi] = znchar(Mod(195,448))
Basic properties
Modulus: | \(448\) | |
Conductor: | \(448\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(16\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 448.bd
\(\chi_{448}(27,\cdot)\) \(\chi_{448}(83,\cdot)\) \(\chi_{448}(139,\cdot)\) \(\chi_{448}(195,\cdot)\) \(\chi_{448}(251,\cdot)\) \(\chi_{448}(307,\cdot)\) \(\chi_{448}(363,\cdot)\) \(\chi_{448}(419,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{16})\) |
Fixed field: | 16.16.3484608386920116940487669055488.4 |
Values on generators
\((127,197,129)\) → \((-1,e\left(\frac{3}{16}\right),-1)\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(23\) | \(25\) |
\( \chi_{ 448 }(195, a) \) | \(1\) | \(1\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(i\) | \(-i\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)