from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(45120, base_ring=CyclotomicField(92))
M = H._module
chi = DirichletCharacter(H, M([0,69,0,46,80]))
pari: [g,chi] = znchar(Mod(20689,45120))
χ45120(49,⋅)
χ45120(529,⋅)
χ45120(1489,⋅)
χ45120(1969,⋅)
χ45120(3409,⋅)
χ45120(4849,⋅)
χ45120(5329,⋅)
χ45120(5809,⋅)
χ45120(7729,⋅)
χ45120(9169,⋅)
χ45120(9649,⋅)
χ45120(10129,⋅)
χ45120(10609,⋅)
χ45120(11569,⋅)
χ45120(12049,⋅)
χ45120(12529,⋅)
χ45120(13009,⋅)
χ45120(15889,⋅)
χ45120(18289,⋅)
χ45120(18769,⋅)
χ45120(19729,⋅)
χ45120(20689,⋅)
χ45120(22609,⋅)
χ45120(23089,⋅)
χ45120(24049,⋅)
χ45120(24529,⋅)
χ45120(25969,⋅)
χ45120(27409,⋅)
χ45120(27889,⋅)
χ45120(28369,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(43711,2821,15041,36097,18241) → (1,−i,1,−1,e(2320))
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 |
χ45120(20689,a) |
1 | 1 | e(2319) | e(9277) | e(9229) | e(4619) | e(9235) | e(238) | e(9263) | e(2314) | e(9271) | e(4625) |