Properties

Label 45120.20689
Modulus 4512045120
Conductor 37603760
Order 9292
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45120, base_ring=CyclotomicField(92))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,69,0,46,80]))
 
pari: [g,chi] = znchar(Mod(20689,45120))
 

Basic properties

Modulus: 4512045120
Conductor: 37603760
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 9292
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ3760(2829,)\chi_{3760}(2829,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 45120.gy

χ45120(49,)\chi_{45120}(49,\cdot) χ45120(529,)\chi_{45120}(529,\cdot) χ45120(1489,)\chi_{45120}(1489,\cdot) χ45120(1969,)\chi_{45120}(1969,\cdot) χ45120(3409,)\chi_{45120}(3409,\cdot) χ45120(4849,)\chi_{45120}(4849,\cdot) χ45120(5329,)\chi_{45120}(5329,\cdot) χ45120(5809,)\chi_{45120}(5809,\cdot) χ45120(7729,)\chi_{45120}(7729,\cdot) χ45120(9169,)\chi_{45120}(9169,\cdot) χ45120(9649,)\chi_{45120}(9649,\cdot) χ45120(10129,)\chi_{45120}(10129,\cdot) χ45120(10609,)\chi_{45120}(10609,\cdot) χ45120(11569,)\chi_{45120}(11569,\cdot) χ45120(12049,)\chi_{45120}(12049,\cdot) χ45120(12529,)\chi_{45120}(12529,\cdot) χ45120(13009,)\chi_{45120}(13009,\cdot) χ45120(15889,)\chi_{45120}(15889,\cdot) χ45120(18289,)\chi_{45120}(18289,\cdot) χ45120(18769,)\chi_{45120}(18769,\cdot) χ45120(19729,)\chi_{45120}(19729,\cdot) χ45120(20689,)\chi_{45120}(20689,\cdot) χ45120(22609,)\chi_{45120}(22609,\cdot) χ45120(23089,)\chi_{45120}(23089,\cdot) χ45120(24049,)\chi_{45120}(24049,\cdot) χ45120(24529,)\chi_{45120}(24529,\cdot) χ45120(25969,)\chi_{45120}(25969,\cdot) χ45120(27409,)\chi_{45120}(27409,\cdot) χ45120(27889,)\chi_{45120}(27889,\cdot) χ45120(28369,)\chi_{45120}(28369,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ92)\Q(\zeta_{92})
Fixed field: Number field defined by a degree 92 polynomial

Values on generators

(43711,2821,15041,36097,18241)(43711,2821,15041,36097,18241)(1,i,1,1,e(2023))(1,-i,1,-1,e\left(\frac{20}{23}\right))

First values

aa 1-11177111113131717191923232929313137374141
χ45120(20689,a) \chi_{ 45120 }(20689, a) 1111e(1923)e\left(\frac{19}{23}\right)e(7792)e\left(\frac{77}{92}\right)e(2992)e\left(\frac{29}{92}\right)e(1946)e\left(\frac{19}{46}\right)e(3592)e\left(\frac{35}{92}\right)e(823)e\left(\frac{8}{23}\right)e(6392)e\left(\frac{63}{92}\right)e(1423)e\left(\frac{14}{23}\right)e(7192)e\left(\frac{71}{92}\right)e(2546)e\left(\frac{25}{46}\right)
sage: chi.jacobi_sum(n)
 
χ45120(20689,a)   \chi_{ 45120 }(20689,a) \; at   a=\;a = e.g. 2