Properties

Label 459.208
Modulus 459459
Conductor 153153
Order 1212
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(459, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([8,9]))
 
pari: [g,chi] = znchar(Mod(208,459))
 

Basic properties

Modulus: 459459
Conductor: 153153
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ153(106,)\chi_{153}(106,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 459.o

χ459(64,)\chi_{459}(64,\cdot) χ459(208,)\chi_{459}(208,\cdot) χ459(361,)\chi_{459}(361,\cdot) χ459(370,)\chi_{459}(370,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.12.5104819233548816337.1

Values on generators

(137,190)(137,190)(e(23),i)(e\left(\frac{2}{3}\right),-i)

First values

aa 1-111224455778810101111131314141616
χ459(208,a) \chi_{ 459 }(208, a) 1111e(16)e\left(\frac{1}{6}\right)e(13)e\left(\frac{1}{3}\right)e(112)e\left(\frac{1}{12}\right)e(1112)e\left(\frac{11}{12}\right)1-1iie(1112)e\left(\frac{11}{12}\right)e(13)e\left(\frac{1}{3}\right)e(112)e\left(\frac{1}{12}\right)e(23)e\left(\frac{2}{3}\right)
sage: chi.jacobi_sum(n)
 
χ459(208,a)   \chi_{ 459 }(208,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ459(208,))   \tau_{ a }( \chi_{ 459 }(208,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ459(208,),χ459(n,))   J(\chi_{ 459 }(208,·),\chi_{ 459 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ459(208,))  K(a,b,\chi_{ 459 }(208,·)) \; at   a,b=\; a,b = e.g. 1,2