from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4598, base_ring=CyclotomicField(90))
M = H._module
chi = DirichletCharacter(H, M([54,10]))
pari: [g,chi] = znchar(Mod(251,4598))
χ4598(9,⋅)
χ4598(81,⋅)
χ4598(245,⋅)
χ4598(251,⋅)
χ4598(511,⋅)
χ4598(807,⋅)
χ4598(1049,⋅)
χ4598(1213,⋅)
χ4598(1461,⋅)
χ4598(1479,⋅)
χ4598(1697,⋅)
χ4598(1963,⋅)
χ4598(2259,⋅)
χ4598(2429,⋅)
χ4598(2665,⋅)
χ4598(2913,⋅)
χ4598(2931,⋅)
χ4598(3227,⋅)
χ4598(3391,⋅)
χ4598(3633,⋅)
χ4598(3657,⋅)
χ4598(3711,⋅)
χ4598(3881,⋅)
χ4598(3899,⋅)
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(3269,3631) → (e(53),e(91))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 13 | 15 | 17 | 21 | 23 | 25 |
χ4598(251,a) |
1 | 1 | e(4511) | e(458) | e(1513) | e(4522) | e(457) | e(4519) | e(4523) | e(91) | e(92) | e(4516) |