from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4598, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([39,11]))
pari: [g,chi] = znchar(Mod(65,4598))
Basic properties
Modulus: | \(4598\) | |
Conductor: | \(2299\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(66\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{2299}(65,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 4598.bd
\(\chi_{4598}(65,\cdot)\) \(\chi_{4598}(373,\cdot)\) \(\chi_{4598}(791,\cdot)\) \(\chi_{4598}(901,\cdot)\) \(\chi_{4598}(1319,\cdot)\) \(\chi_{4598}(1627,\cdot)\) \(\chi_{4598}(1737,\cdot)\) \(\chi_{4598}(2045,\cdot)\) \(\chi_{4598}(2155,\cdot)\) \(\chi_{4598}(2463,\cdot)\) \(\chi_{4598}(2573,\cdot)\) \(\chi_{4598}(2881,\cdot)\) \(\chi_{4598}(2991,\cdot)\) \(\chi_{4598}(3299,\cdot)\) \(\chi_{4598}(3409,\cdot)\) \(\chi_{4598}(3717,\cdot)\) \(\chi_{4598}(3827,\cdot)\) \(\chi_{4598}(4135,\cdot)\) \(\chi_{4598}(4245,\cdot)\) \(\chi_{4598}(4553,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{33})\) |
Fixed field: | Number field defined by a degree 66 polynomial |
Values on generators
\((3269,3631)\) → \((e\left(\frac{13}{22}\right),e\left(\frac{1}{6}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) | \(25\) |
\( \chi_{ 4598 }(65, a) \) | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{13}{33}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{17}{33}\right)\) | \(e\left(\frac{37}{66}\right)\) | \(e\left(\frac{41}{66}\right)\) | \(e\left(\frac{10}{33}\right)\) | \(e\left(\frac{23}{33}\right)\) | \(e\left(\frac{26}{33}\right)\) |
sage: chi.jacobi_sum(n)