Properties

Label 4608.cb
Modulus $4608$
Conductor $512$
Order $128$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4608, base_ring=CyclotomicField(128))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,25,0]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(37,4608))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4608\)
Conductor: \(512\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(128\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 512.o
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{128})$
Fixed field: Number field defined by a degree 128 polynomial (not computed)

First 31 of 64 characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\)
\(\chi_{4608}(37,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{128}\right)\) \(e\left(\frac{29}{64}\right)\) \(e\left(\frac{77}{128}\right)\) \(e\left(\frac{87}{128}\right)\) \(e\left(\frac{15}{32}\right)\) \(e\left(\frac{63}{128}\right)\) \(e\left(\frac{47}{64}\right)\) \(e\left(\frac{25}{64}\right)\) \(e\left(\frac{3}{128}\right)\) \(e\left(\frac{9}{16}\right)\)
\(\chi_{4608}(109,\cdot)\) \(1\) \(1\) \(e\left(\frac{119}{128}\right)\) \(e\left(\frac{51}{64}\right)\) \(e\left(\frac{3}{128}\right)\) \(e\left(\frac{25}{128}\right)\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{49}{128}\right)\) \(e\left(\frac{1}{64}\right)\) \(e\left(\frac{55}{64}\right)\) \(e\left(\frac{45}{128}\right)\) \(e\left(\frac{7}{16}\right)\)
\(\chi_{4608}(181,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{128}\right)\) \(e\left(\frac{25}{64}\right)\) \(e\left(\frac{9}{128}\right)\) \(e\left(\frac{75}{128}\right)\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{19}{128}\right)\) \(e\left(\frac{3}{64}\right)\) \(e\left(\frac{37}{64}\right)\) \(e\left(\frac{7}{128}\right)\) \(e\left(\frac{5}{16}\right)\)
\(\chi_{4608}(253,\cdot)\) \(1\) \(1\) \(e\left(\frac{99}{128}\right)\) \(e\left(\frac{15}{64}\right)\) \(e\left(\frac{95}{128}\right)\) \(e\left(\frac{109}{128}\right)\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{101}{128}\right)\) \(e\left(\frac{53}{64}\right)\) \(e\left(\frac{35}{64}\right)\) \(e\left(\frac{17}{128}\right)\) \(e\left(\frac{3}{16}\right)\)
\(\chi_{4608}(325,\cdot)\) \(1\) \(1\) \(e\left(\frac{113}{128}\right)\) \(e\left(\frac{21}{64}\right)\) \(e\left(\frac{5}{128}\right)\) \(e\left(\frac{127}{128}\right)\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{39}{128}\right)\) \(e\left(\frac{23}{64}\right)\) \(e\left(\frac{49}{64}\right)\) \(e\left(\frac{75}{128}\right)\) \(e\left(\frac{1}{16}\right)\)
\(\chi_{4608}(397,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{128}\right)\) \(e\left(\frac{43}{64}\right)\) \(e\left(\frac{123}{128}\right)\) \(e\left(\frac{1}{128}\right)\) \(e\left(\frac{9}{32}\right)\) \(e\left(\frac{89}{128}\right)\) \(e\left(\frac{41}{64}\right)\) \(e\left(\frac{15}{64}\right)\) \(e\left(\frac{53}{128}\right)\) \(e\left(\frac{15}{16}\right)\)
\(\chi_{4608}(469,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{128}\right)\) \(e\left(\frac{17}{64}\right)\) \(e\left(\frac{65}{128}\right)\) \(e\left(\frac{115}{128}\right)\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{123}{128}\right)\) \(e\left(\frac{43}{64}\right)\) \(e\left(\frac{61}{64}\right)\) \(e\left(\frac{79}{128}\right)\) \(e\left(\frac{13}{16}\right)\)
\(\chi_{4608}(541,\cdot)\) \(1\) \(1\) \(e\left(\frac{123}{128}\right)\) \(e\left(\frac{7}{64}\right)\) \(e\left(\frac{87}{128}\right)\) \(e\left(\frac{85}{128}\right)\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{13}{128}\right)\) \(e\left(\frac{29}{64}\right)\) \(e\left(\frac{59}{64}\right)\) \(e\left(\frac{25}{128}\right)\) \(e\left(\frac{11}{16}\right)\)
\(\chi_{4608}(613,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{128}\right)\) \(e\left(\frac{13}{64}\right)\) \(e\left(\frac{61}{128}\right)\) \(e\left(\frac{39}{128}\right)\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{15}{128}\right)\) \(e\left(\frac{63}{64}\right)\) \(e\left(\frac{9}{64}\right)\) \(e\left(\frac{19}{128}\right)\) \(e\left(\frac{9}{16}\right)\)
\(\chi_{4608}(685,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{128}\right)\) \(e\left(\frac{35}{64}\right)\) \(e\left(\frac{115}{128}\right)\) \(e\left(\frac{105}{128}\right)\) \(e\left(\frac{17}{32}\right)\) \(e\left(\frac{1}{128}\right)\) \(e\left(\frac{17}{64}\right)\) \(e\left(\frac{39}{64}\right)\) \(e\left(\frac{61}{128}\right)\) \(e\left(\frac{7}{16}\right)\)
\(\chi_{4608}(757,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{128}\right)\) \(e\left(\frac{9}{64}\right)\) \(e\left(\frac{121}{128}\right)\) \(e\left(\frac{27}{128}\right)\) \(e\left(\frac{19}{32}\right)\) \(e\left(\frac{99}{128}\right)\) \(e\left(\frac{19}{64}\right)\) \(e\left(\frac{21}{64}\right)\) \(e\left(\frac{23}{128}\right)\) \(e\left(\frac{5}{16}\right)\)
\(\chi_{4608}(829,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{128}\right)\) \(e\left(\frac{63}{64}\right)\) \(e\left(\frac{79}{128}\right)\) \(e\left(\frac{61}{128}\right)\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{53}{128}\right)\) \(e\left(\frac{5}{64}\right)\) \(e\left(\frac{19}{64}\right)\) \(e\left(\frac{33}{128}\right)\) \(e\left(\frac{3}{16}\right)\)
\(\chi_{4608}(901,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{128}\right)\) \(e\left(\frac{5}{64}\right)\) \(e\left(\frac{117}{128}\right)\) \(e\left(\frac{79}{128}\right)\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{119}{128}\right)\) \(e\left(\frac{39}{64}\right)\) \(e\left(\frac{33}{64}\right)\) \(e\left(\frac{91}{128}\right)\) \(e\left(\frac{1}{16}\right)\)
\(\chi_{4608}(973,\cdot)\) \(1\) \(1\) \(e\left(\frac{63}{128}\right)\) \(e\left(\frac{27}{64}\right)\) \(e\left(\frac{107}{128}\right)\) \(e\left(\frac{81}{128}\right)\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{41}{128}\right)\) \(e\left(\frac{57}{64}\right)\) \(e\left(\frac{63}{64}\right)\) \(e\left(\frac{69}{128}\right)\) \(e\left(\frac{15}{16}\right)\)
\(\chi_{4608}(1045,\cdot)\) \(1\) \(1\) \(e\left(\frac{109}{128}\right)\) \(e\left(\frac{1}{64}\right)\) \(e\left(\frac{49}{128}\right)\) \(e\left(\frac{67}{128}\right)\) \(e\left(\frac{27}{32}\right)\) \(e\left(\frac{75}{128}\right)\) \(e\left(\frac{59}{64}\right)\) \(e\left(\frac{45}{64}\right)\) \(e\left(\frac{95}{128}\right)\) \(e\left(\frac{13}{16}\right)\)
\(\chi_{4608}(1117,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{128}\right)\) \(e\left(\frac{55}{64}\right)\) \(e\left(\frac{71}{128}\right)\) \(e\left(\frac{37}{128}\right)\) \(e\left(\frac{13}{32}\right)\) \(e\left(\frac{93}{128}\right)\) \(e\left(\frac{45}{64}\right)\) \(e\left(\frac{43}{64}\right)\) \(e\left(\frac{41}{128}\right)\) \(e\left(\frac{11}{16}\right)\)
\(\chi_{4608}(1189,\cdot)\) \(1\) \(1\) \(e\left(\frac{121}{128}\right)\) \(e\left(\frac{61}{64}\right)\) \(e\left(\frac{45}{128}\right)\) \(e\left(\frac{119}{128}\right)\) \(e\left(\frac{15}{32}\right)\) \(e\left(\frac{95}{128}\right)\) \(e\left(\frac{15}{64}\right)\) \(e\left(\frac{57}{64}\right)\) \(e\left(\frac{35}{128}\right)\) \(e\left(\frac{9}{16}\right)\)
\(\chi_{4608}(1261,\cdot)\) \(1\) \(1\) \(e\left(\frac{87}{128}\right)\) \(e\left(\frac{19}{64}\right)\) \(e\left(\frac{99}{128}\right)\) \(e\left(\frac{57}{128}\right)\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{81}{128}\right)\) \(e\left(\frac{33}{64}\right)\) \(e\left(\frac{23}{64}\right)\) \(e\left(\frac{77}{128}\right)\) \(e\left(\frac{7}{16}\right)\)
\(\chi_{4608}(1333,\cdot)\) \(1\) \(1\) \(e\left(\frac{69}{128}\right)\) \(e\left(\frac{57}{64}\right)\) \(e\left(\frac{105}{128}\right)\) \(e\left(\frac{107}{128}\right)\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{51}{128}\right)\) \(e\left(\frac{35}{64}\right)\) \(e\left(\frac{5}{64}\right)\) \(e\left(\frac{39}{128}\right)\) \(e\left(\frac{5}{16}\right)\)
\(\chi_{4608}(1405,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{128}\right)\) \(e\left(\frac{47}{64}\right)\) \(e\left(\frac{63}{128}\right)\) \(e\left(\frac{13}{128}\right)\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{5}{128}\right)\) \(e\left(\frac{21}{64}\right)\) \(e\left(\frac{3}{64}\right)\) \(e\left(\frac{49}{128}\right)\) \(e\left(\frac{3}{16}\right)\)
\(\chi_{4608}(1477,\cdot)\) \(1\) \(1\) \(e\left(\frac{81}{128}\right)\) \(e\left(\frac{53}{64}\right)\) \(e\left(\frac{101}{128}\right)\) \(e\left(\frac{31}{128}\right)\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{71}{128}\right)\) \(e\left(\frac{55}{64}\right)\) \(e\left(\frac{17}{64}\right)\) \(e\left(\frac{107}{128}\right)\) \(e\left(\frac{1}{16}\right)\)
\(\chi_{4608}(1549,\cdot)\) \(1\) \(1\) \(e\left(\frac{111}{128}\right)\) \(e\left(\frac{11}{64}\right)\) \(e\left(\frac{91}{128}\right)\) \(e\left(\frac{33}{128}\right)\) \(e\left(\frac{9}{32}\right)\) \(e\left(\frac{121}{128}\right)\) \(e\left(\frac{9}{64}\right)\) \(e\left(\frac{47}{64}\right)\) \(e\left(\frac{85}{128}\right)\) \(e\left(\frac{15}{16}\right)\)
\(\chi_{4608}(1621,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{128}\right)\) \(e\left(\frac{49}{64}\right)\) \(e\left(\frac{33}{128}\right)\) \(e\left(\frac{19}{128}\right)\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{27}{128}\right)\) \(e\left(\frac{11}{64}\right)\) \(e\left(\frac{29}{64}\right)\) \(e\left(\frac{111}{128}\right)\) \(e\left(\frac{13}{16}\right)\)
\(\chi_{4608}(1693,\cdot)\) \(1\) \(1\) \(e\left(\frac{91}{128}\right)\) \(e\left(\frac{39}{64}\right)\) \(e\left(\frac{55}{128}\right)\) \(e\left(\frac{117}{128}\right)\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{45}{128}\right)\) \(e\left(\frac{61}{64}\right)\) \(e\left(\frac{27}{64}\right)\) \(e\left(\frac{57}{128}\right)\) \(e\left(\frac{11}{16}\right)\)
\(\chi_{4608}(1765,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{128}\right)\) \(e\left(\frac{45}{64}\right)\) \(e\left(\frac{29}{128}\right)\) \(e\left(\frac{71}{128}\right)\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{47}{128}\right)\) \(e\left(\frac{31}{64}\right)\) \(e\left(\frac{41}{64}\right)\) \(e\left(\frac{51}{128}\right)\) \(e\left(\frac{9}{16}\right)\)
\(\chi_{4608}(1837,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{128}\right)\) \(e\left(\frac{3}{64}\right)\) \(e\left(\frac{83}{128}\right)\) \(e\left(\frac{9}{128}\right)\) \(e\left(\frac{17}{32}\right)\) \(e\left(\frac{33}{128}\right)\) \(e\left(\frac{49}{64}\right)\) \(e\left(\frac{7}{64}\right)\) \(e\left(\frac{93}{128}\right)\) \(e\left(\frac{7}{16}\right)\)
\(\chi_{4608}(1909,\cdot)\) \(1\) \(1\) \(e\left(\frac{117}{128}\right)\) \(e\left(\frac{41}{64}\right)\) \(e\left(\frac{89}{128}\right)\) \(e\left(\frac{59}{128}\right)\) \(e\left(\frac{19}{32}\right)\) \(e\left(\frac{3}{128}\right)\) \(e\left(\frac{51}{64}\right)\) \(e\left(\frac{53}{64}\right)\) \(e\left(\frac{55}{128}\right)\) \(e\left(\frac{5}{16}\right)\)
\(\chi_{4608}(1981,\cdot)\) \(1\) \(1\) \(e\left(\frac{115}{128}\right)\) \(e\left(\frac{31}{64}\right)\) \(e\left(\frac{47}{128}\right)\) \(e\left(\frac{93}{128}\right)\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{85}{128}\right)\) \(e\left(\frac{37}{64}\right)\) \(e\left(\frac{51}{64}\right)\) \(e\left(\frac{65}{128}\right)\) \(e\left(\frac{3}{16}\right)\)
\(\chi_{4608}(2053,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{128}\right)\) \(e\left(\frac{37}{64}\right)\) \(e\left(\frac{85}{128}\right)\) \(e\left(\frac{111}{128}\right)\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{23}{128}\right)\) \(e\left(\frac{7}{64}\right)\) \(e\left(\frac{1}{64}\right)\) \(e\left(\frac{123}{128}\right)\) \(e\left(\frac{1}{16}\right)\)
\(\chi_{4608}(2125,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{128}\right)\) \(e\left(\frac{59}{64}\right)\) \(e\left(\frac{75}{128}\right)\) \(e\left(\frac{113}{128}\right)\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{73}{128}\right)\) \(e\left(\frac{25}{64}\right)\) \(e\left(\frac{31}{64}\right)\) \(e\left(\frac{101}{128}\right)\) \(e\left(\frac{15}{16}\right)\)
\(\chi_{4608}(2197,\cdot)\) \(1\) \(1\) \(e\left(\frac{77}{128}\right)\) \(e\left(\frac{33}{64}\right)\) \(e\left(\frac{17}{128}\right)\) \(e\left(\frac{99}{128}\right)\) \(e\left(\frac{27}{32}\right)\) \(e\left(\frac{107}{128}\right)\) \(e\left(\frac{27}{64}\right)\) \(e\left(\frac{13}{64}\right)\) \(e\left(\frac{127}{128}\right)\) \(e\left(\frac{13}{16}\right)\)