from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(462, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([0,10,18]))
pari: [g,chi] = znchar(Mod(163,462))
Basic properties
Modulus: | \(462\) | |
Conductor: | \(77\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(15\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{77}(9,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 462.y
\(\chi_{462}(25,\cdot)\) \(\chi_{462}(37,\cdot)\) \(\chi_{462}(163,\cdot)\) \(\chi_{462}(235,\cdot)\) \(\chi_{462}(247,\cdot)\) \(\chi_{462}(289,\cdot)\) \(\chi_{462}(361,\cdot)\) \(\chi_{462}(445,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{15})\) |
Fixed field: | 15.15.886528337182930278529.1 |
Values on generators
\((155,199,211)\) → \((1,e\left(\frac{1}{3}\right),e\left(\frac{3}{5}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 462 }(163, a) \) | \(1\) | \(1\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{4}{5}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)