Properties

Label 46208.33
Modulus 4620846208
Conductor 57765776
Order 684684
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(46208, base_ring=CyclotomicField(684))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,513,482]))
 
pari: [g,chi] = znchar(Mod(33,46208))
 

Basic properties

Modulus: 4620846208
Conductor: 57765776
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 684684
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ5776(4365,)\chi_{5776}(4365,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 46208.eq

χ46208(33,)\chi_{46208}(33,\cdot) χ46208(97,)\chi_{46208}(97,\cdot) χ46208(545,)\chi_{46208}(545,\cdot) χ46208(737,)\chi_{46208}(737,\cdot) χ46208(801,)\chi_{46208}(801,\cdot) χ46208(865,)\chi_{46208}(865,\cdot) χ46208(1249,)\chi_{46208}(1249,\cdot) χ46208(1313,)\chi_{46208}(1313,\cdot) χ46208(1761,)\chi_{46208}(1761,\cdot) χ46208(1953,)\chi_{46208}(1953,\cdot) χ46208(2017,)\chi_{46208}(2017,\cdot) χ46208(2081,)\chi_{46208}(2081,\cdot) χ46208(2529,)\chi_{46208}(2529,\cdot) χ46208(2977,)\chi_{46208}(2977,\cdot) χ46208(3169,)\chi_{46208}(3169,\cdot) χ46208(3233,)\chi_{46208}(3233,\cdot) χ46208(3297,)\chi_{46208}(3297,\cdot) χ46208(3681,)\chi_{46208}(3681,\cdot) χ46208(3745,)\chi_{46208}(3745,\cdot) χ46208(4193,)\chi_{46208}(4193,\cdot) χ46208(4385,)\chi_{46208}(4385,\cdot) χ46208(4449,)\chi_{46208}(4449,\cdot) χ46208(4513,)\chi_{46208}(4513,\cdot) χ46208(4897,)\chi_{46208}(4897,\cdot) χ46208(4961,)\chi_{46208}(4961,\cdot) χ46208(5409,)\chi_{46208}(5409,\cdot) χ46208(5601,)\chi_{46208}(5601,\cdot) χ46208(5665,)\chi_{46208}(5665,\cdot) χ46208(5729,)\chi_{46208}(5729,\cdot) χ46208(6113,)\chi_{46208}(6113,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ684)\Q(\zeta_{684})
Fixed field: Number field defined by a degree 684 polynomial (not computed)

Values on generators

(28159,36101,14081)(28159,36101,14081)(1,i,e(241342))(1,-i,e\left(\frac{241}{342}\right))

First values

aa 1-11133557799111113131515171721212323
χ46208(33,a) \chi_{ 46208 }(33, a) 1-111e(137684)e\left(\frac{137}{684}\right)e(161684)e\left(\frac{161}{684}\right)e(23114)e\left(\frac{23}{114}\right)e(137342)e\left(\frac{137}{342}\right)e(143228)e\left(\frac{143}{228}\right)e(61684)e\left(\frac{61}{684}\right)e(149342)e\left(\frac{149}{342}\right)e(44171)e\left(\frac{44}{171}\right)e(275684)e\left(\frac{275}{684}\right)e(131342)e\left(\frac{131}{342}\right)
sage: chi.jacobi_sum(n)
 
χ46208(33,a)   \chi_{ 46208 }(33,a) \; at   a=\;a = e.g. 2