from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(46208, base_ring=CyclotomicField(684))
M = H._module
chi = DirichletCharacter(H, M([0,513,482]))
pari: [g,chi] = znchar(Mod(33,46208))
χ46208(33,⋅)
χ46208(97,⋅)
χ46208(545,⋅)
χ46208(737,⋅)
χ46208(801,⋅)
χ46208(865,⋅)
χ46208(1249,⋅)
χ46208(1313,⋅)
χ46208(1761,⋅)
χ46208(1953,⋅)
χ46208(2017,⋅)
χ46208(2081,⋅)
χ46208(2529,⋅)
χ46208(2977,⋅)
χ46208(3169,⋅)
χ46208(3233,⋅)
χ46208(3297,⋅)
χ46208(3681,⋅)
χ46208(3745,⋅)
χ46208(4193,⋅)
χ46208(4385,⋅)
χ46208(4449,⋅)
χ46208(4513,⋅)
χ46208(4897,⋅)
χ46208(4961,⋅)
χ46208(5409,⋅)
χ46208(5601,⋅)
χ46208(5665,⋅)
χ46208(5729,⋅)
χ46208(6113,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(28159,36101,14081) → (1,−i,e(342241))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 21 | 23 |
χ46208(33,a) |
−1 | 1 | e(684137) | e(684161) | e(11423) | e(342137) | e(228143) | e(68461) | e(342149) | e(17144) | e(684275) | e(342131) |