from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(46208, base_ring=CyclotomicField(608))
M = H._module
chi = DirichletCharacter(H, M([0,475,80]))
pari: [g,chi] = znchar(Mod(37,46208))
χ46208(37,⋅)
χ46208(189,⋅)
χ46208(341,⋅)
χ46208(493,⋅)
χ46208(645,⋅)
χ46208(797,⋅)
χ46208(949,⋅)
χ46208(1101,⋅)
χ46208(1253,⋅)
χ46208(1405,⋅)
χ46208(1557,⋅)
χ46208(1709,⋅)
χ46208(1861,⋅)
χ46208(2013,⋅)
χ46208(2317,⋅)
χ46208(2469,⋅)
χ46208(2621,⋅)
χ46208(2773,⋅)
χ46208(2925,⋅)
χ46208(3077,⋅)
χ46208(3229,⋅)
χ46208(3381,⋅)
χ46208(3533,⋅)
χ46208(3685,⋅)
χ46208(3837,⋅)
χ46208(3989,⋅)
χ46208(4141,⋅)
χ46208(4293,⋅)
χ46208(4445,⋅)
χ46208(4597,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(28159,36101,14081) → (1,e(3225),e(385))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 21 | 23 |
χ46208(37,a) |
−1 | 1 | e(608385) | e(608187) | e(304167) | e(30481) | e(608503) | e(6085) | e(152143) | e(15293) | e(608111) | e(30445) |