Properties

Label 46208.37
Modulus 4620846208
Conductor 4620846208
Order 608608
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(46208, base_ring=CyclotomicField(608))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,475,80]))
 
pari: [g,chi] = znchar(Mod(37,46208))
 

Basic properties

Modulus: 4620846208
Conductor: 4620846208
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 608608
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 46208.eo

χ46208(37,)\chi_{46208}(37,\cdot) χ46208(189,)\chi_{46208}(189,\cdot) χ46208(341,)\chi_{46208}(341,\cdot) χ46208(493,)\chi_{46208}(493,\cdot) χ46208(645,)\chi_{46208}(645,\cdot) χ46208(797,)\chi_{46208}(797,\cdot) χ46208(949,)\chi_{46208}(949,\cdot) χ46208(1101,)\chi_{46208}(1101,\cdot) χ46208(1253,)\chi_{46208}(1253,\cdot) χ46208(1405,)\chi_{46208}(1405,\cdot) χ46208(1557,)\chi_{46208}(1557,\cdot) χ46208(1709,)\chi_{46208}(1709,\cdot) χ46208(1861,)\chi_{46208}(1861,\cdot) χ46208(2013,)\chi_{46208}(2013,\cdot) χ46208(2317,)\chi_{46208}(2317,\cdot) χ46208(2469,)\chi_{46208}(2469,\cdot) χ46208(2621,)\chi_{46208}(2621,\cdot) χ46208(2773,)\chi_{46208}(2773,\cdot) χ46208(2925,)\chi_{46208}(2925,\cdot) χ46208(3077,)\chi_{46208}(3077,\cdot) χ46208(3229,)\chi_{46208}(3229,\cdot) χ46208(3381,)\chi_{46208}(3381,\cdot) χ46208(3533,)\chi_{46208}(3533,\cdot) χ46208(3685,)\chi_{46208}(3685,\cdot) χ46208(3837,)\chi_{46208}(3837,\cdot) χ46208(3989,)\chi_{46208}(3989,\cdot) χ46208(4141,)\chi_{46208}(4141,\cdot) χ46208(4293,)\chi_{46208}(4293,\cdot) χ46208(4445,)\chi_{46208}(4445,\cdot) χ46208(4597,)\chi_{46208}(4597,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ608)\Q(\zeta_{608})
Fixed field: Number field defined by a degree 608 polynomial (not computed)

Values on generators

(28159,36101,14081)(28159,36101,14081)(1,e(2532),e(538))(1,e\left(\frac{25}{32}\right),e\left(\frac{5}{38}\right))

First values

aa 1-11133557799111113131515171721212323
χ46208(37,a) \chi_{ 46208 }(37, a) 1-111e(385608)e\left(\frac{385}{608}\right)e(187608)e\left(\frac{187}{608}\right)e(167304)e\left(\frac{167}{304}\right)e(81304)e\left(\frac{81}{304}\right)e(503608)e\left(\frac{503}{608}\right)e(5608)e\left(\frac{5}{608}\right)e(143152)e\left(\frac{143}{152}\right)e(93152)e\left(\frac{93}{152}\right)e(111608)e\left(\frac{111}{608}\right)e(45304)e\left(\frac{45}{304}\right)
sage: chi.jacobi_sum(n)
 
χ46208(37,a)   \chi_{ 46208 }(37,a) \; at   a=\;a = e.g. 2