Properties

Label 46208.39
Modulus 4620846208
Conductor 2310423104
Order 304304
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(46208, base_ring=CyclotomicField(304))
 
M = H._module
 
chi = DirichletCharacter(H, M([152,171,112]))
 
pari: [g,chi] = znchar(Mod(39,46208))
 

Basic properties

Modulus: 4620846208
Conductor: 2310423104
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 304304
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ23104(7259,)\chi_{23104}(7259,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 46208.dy

χ46208(39,)\chi_{46208}(39,\cdot) χ46208(343,)\chi_{46208}(343,\cdot) χ46208(647,)\chi_{46208}(647,\cdot) χ46208(951,)\chi_{46208}(951,\cdot) χ46208(1255,)\chi_{46208}(1255,\cdot) χ46208(1559,)\chi_{46208}(1559,\cdot) χ46208(1863,)\chi_{46208}(1863,\cdot) χ46208(2471,)\chi_{46208}(2471,\cdot) χ46208(2775,)\chi_{46208}(2775,\cdot) χ46208(3079,)\chi_{46208}(3079,\cdot) χ46208(3383,)\chi_{46208}(3383,\cdot) χ46208(3687,)\chi_{46208}(3687,\cdot) χ46208(3991,)\chi_{46208}(3991,\cdot) χ46208(4295,)\chi_{46208}(4295,\cdot) χ46208(4599,)\chi_{46208}(4599,\cdot) χ46208(4903,)\chi_{46208}(4903,\cdot) χ46208(5207,)\chi_{46208}(5207,\cdot) χ46208(5511,)\chi_{46208}(5511,\cdot) χ46208(5815,)\chi_{46208}(5815,\cdot) χ46208(6119,)\chi_{46208}(6119,\cdot) χ46208(6423,)\chi_{46208}(6423,\cdot) χ46208(6727,)\chi_{46208}(6727,\cdot) χ46208(7031,)\chi_{46208}(7031,\cdot) χ46208(7335,)\chi_{46208}(7335,\cdot) χ46208(7639,)\chi_{46208}(7639,\cdot) χ46208(8247,)\chi_{46208}(8247,\cdot) χ46208(8551,)\chi_{46208}(8551,\cdot) χ46208(8855,)\chi_{46208}(8855,\cdot) χ46208(9159,)\chi_{46208}(9159,\cdot) χ46208(9463,)\chi_{46208}(9463,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ304)\Q(\zeta_{304})
Fixed field: Number field defined by a degree 304 polynomial (not computed)

Values on generators

(28159,36101,14081)(28159,36101,14081)(1,e(916),e(719))(-1,e\left(\frac{9}{16}\right),e\left(\frac{7}{19}\right))

First values

aa 1-11133557799111113131515171721212323
χ46208(39,a) \chi_{ 46208 }(39, a) 1-111e(121304)e\left(\frac{121}{304}\right)e(11304)e\left(\frac{11}{304}\right)e(59152)e\left(\frac{59}{152}\right)e(121152)e\left(\frac{121}{152}\right)e(271304)e\left(\frac{271}{304}\right)e(197304)e\left(\frac{197}{304}\right)e(3376)e\left(\frac{33}{76}\right)e(176)e\left(\frac{1}{76}\right)e(239304)e\left(\frac{239}{304}\right)e(25152)e\left(\frac{25}{152}\right)
sage: chi.jacobi_sum(n)
 
χ46208(39,a)   \chi_{ 46208 }(39,a) \; at   a=\;a = e.g. 2