from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(46208, base_ring=CyclotomicField(304))
M = H._module
chi = DirichletCharacter(H, M([152,171,112]))
pari: [g,chi] = znchar(Mod(39,46208))
χ46208(39,⋅)
χ46208(343,⋅)
χ46208(647,⋅)
χ46208(951,⋅)
χ46208(1255,⋅)
χ46208(1559,⋅)
χ46208(1863,⋅)
χ46208(2471,⋅)
χ46208(2775,⋅)
χ46208(3079,⋅)
χ46208(3383,⋅)
χ46208(3687,⋅)
χ46208(3991,⋅)
χ46208(4295,⋅)
χ46208(4599,⋅)
χ46208(4903,⋅)
χ46208(5207,⋅)
χ46208(5511,⋅)
χ46208(5815,⋅)
χ46208(6119,⋅)
χ46208(6423,⋅)
χ46208(6727,⋅)
χ46208(7031,⋅)
χ46208(7335,⋅)
χ46208(7639,⋅)
χ46208(8247,⋅)
χ46208(8551,⋅)
χ46208(8855,⋅)
χ46208(9159,⋅)
χ46208(9463,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(28159,36101,14081) → (−1,e(169),e(197))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 21 | 23 |
χ46208(39,a) |
−1 | 1 | e(304121) | e(30411) | e(15259) | e(152121) | e(304271) | e(304197) | e(7633) | e(761) | e(304239) | e(15225) |