Properties

Label 46208.613
Modulus 4620846208
Conductor 4620846208
Order 54725472
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(46208, base_ring=CyclotomicField(5472))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,1539,1408]))
 
pari: [g,chi] = znchar(Mod(613,46208))
 

Basic properties

Modulus: 4620846208
Conductor: 4620846208
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 54725472
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 46208.fl

χ46208(5,)\chi_{46208}(5,\cdot) χ46208(61,)\chi_{46208}(61,\cdot) χ46208(85,)\chi_{46208}(85,\cdot) χ46208(93,)\chi_{46208}(93,\cdot) χ46208(101,)\chi_{46208}(101,\cdot) χ46208(149,)\chi_{46208}(149,\cdot) χ46208(157,)\chi_{46208}(157,\cdot) χ46208(213,)\chi_{46208}(213,\cdot) χ46208(237,)\chi_{46208}(237,\cdot) χ46208(253,)\chi_{46208}(253,\cdot) χ46208(301,)\chi_{46208}(301,\cdot) χ46208(309,)\chi_{46208}(309,\cdot) χ46208(365,)\chi_{46208}(365,\cdot) χ46208(397,)\chi_{46208}(397,\cdot) χ46208(405,)\chi_{46208}(405,\cdot) χ46208(453,)\chi_{46208}(453,\cdot) χ46208(461,)\chi_{46208}(461,\cdot) χ46208(517,)\chi_{46208}(517,\cdot) χ46208(541,)\chi_{46208}(541,\cdot) χ46208(549,)\chi_{46208}(549,\cdot) χ46208(557,)\chi_{46208}(557,\cdot) χ46208(605,)\chi_{46208}(605,\cdot) χ46208(613,)\chi_{46208}(613,\cdot) χ46208(669,)\chi_{46208}(669,\cdot) χ46208(693,)\chi_{46208}(693,\cdot) χ46208(701,)\chi_{46208}(701,\cdot) χ46208(709,)\chi_{46208}(709,\cdot) χ46208(757,)\chi_{46208}(757,\cdot) χ46208(765,)\chi_{46208}(765,\cdot) χ46208(845,)\chi_{46208}(845,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ5472)\Q(\zeta_{5472})
Fixed field: Number field defined by a degree 5472 polynomial (not computed)

Values on generators

(28159,36101,14081)(28159,36101,14081)(1,e(932),e(44171))(1,e\left(\frac{9}{32}\right),e\left(\frac{44}{171}\right))

First values

aa 1-11133557799111113131515171721212323
χ46208(613,a) \chi_{ 46208 }(613, a) 1111e(33375472)e\left(\frac{3337}{5472}\right)e(53475472)e\left(\frac{5347}{5472}\right)e(373912)e\left(\frac{373}{912}\right)e(6012736)e\left(\frac{601}{2736}\right)e(2771824)e\left(\frac{277}{1824}\right)e(47815472)e\left(\frac{4781}{5472}\right)e(8031368)e\left(\frac{803}{1368}\right)e(371368)e\left(\frac{37}{1368}\right)e(1035472)e\left(\frac{103}{5472}\right)e(13812736)e\left(\frac{1381}{2736}\right)
sage: chi.jacobi_sum(n)
 
χ46208(613,a)   \chi_{ 46208 }(613,a) \; at   a=\;a = e.g. 2