from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(46208, base_ring=CyclotomicField(5472))
M = H._module
chi = DirichletCharacter(H, M([0,1539,1408]))
pari: [g,chi] = znchar(Mod(613,46208))
χ46208(5,⋅)
χ46208(61,⋅)
χ46208(85,⋅)
χ46208(93,⋅)
χ46208(101,⋅)
χ46208(149,⋅)
χ46208(157,⋅)
χ46208(213,⋅)
χ46208(237,⋅)
χ46208(253,⋅)
χ46208(301,⋅)
χ46208(309,⋅)
χ46208(365,⋅)
χ46208(397,⋅)
χ46208(405,⋅)
χ46208(453,⋅)
χ46208(461,⋅)
χ46208(517,⋅)
χ46208(541,⋅)
χ46208(549,⋅)
χ46208(557,⋅)
χ46208(605,⋅)
χ46208(613,⋅)
χ46208(669,⋅)
χ46208(693,⋅)
χ46208(701,⋅)
χ46208(709,⋅)
χ46208(757,⋅)
χ46208(765,⋅)
χ46208(845,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(28159,36101,14081) → (1,e(329),e(17144))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 21 | 23 |
χ46208(613,a) |
1 | 1 | e(54723337) | e(54725347) | e(912373) | e(2736601) | e(1824277) | e(54724781) | e(1368803) | e(136837) | e(5472103) | e(27361381) |