from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(464, base_ring=CyclotomicField(28))
M = H._module
chi = DirichletCharacter(H, M([14,0,9]))
pari: [g,chi] = znchar(Mod(367,464))
Basic properties
Modulus: | \(464\) | |
Conductor: | \(116\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(28\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{116}(19,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 464.bl
\(\chi_{464}(15,\cdot)\) \(\chi_{464}(31,\cdot)\) \(\chi_{464}(47,\cdot)\) \(\chi_{464}(79,\cdot)\) \(\chi_{464}(95,\cdot)\) \(\chi_{464}(127,\cdot)\) \(\chi_{464}(143,\cdot)\) \(\chi_{464}(159,\cdot)\) \(\chi_{464}(271,\cdot)\) \(\chi_{464}(287,\cdot)\) \(\chi_{464}(351,\cdot)\) \(\chi_{464}(367,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{28})\) |
Fixed field: | \(\Q(\zeta_{116})^+\) |
Values on generators
\((175,117,321)\) → \((-1,1,e\left(\frac{9}{28}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\( \chi_{ 464 }(367, a) \) | \(1\) | \(1\) | \(e\left(\frac{3}{28}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{5}{28}\right)\) | \(-i\) | \(e\left(\frac{11}{28}\right)\) | \(e\left(\frac{13}{28}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)