sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(464, base_ring=CyclotomicField(28))
M = H._module
chi = DirichletCharacter(H, M([14,0,9]))
pari:[g,chi] = znchar(Mod(367,464))
χ464(15,⋅)
χ464(31,⋅)
χ464(47,⋅)
χ464(79,⋅)
χ464(95,⋅)
χ464(127,⋅)
χ464(143,⋅)
χ464(159,⋅)
χ464(271,⋅)
χ464(287,⋅)
χ464(351,⋅)
χ464(367,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(175,117,321) → (−1,1,e(289))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 |
χ464(367,a) |
1 | 1 | e(283) | e(141) | e(145) | e(143) | e(2815) | e(1411) | e(285) | −i | e(2811) | e(2813) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)