Properties

Label 464.367
Modulus $464$
Conductor $116$
Order $28$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(464, base_ring=CyclotomicField(28))
 
M = H._module
 
chi = DirichletCharacter(H, M([14,0,9]))
 
pari: [g,chi] = znchar(Mod(367,464))
 

Basic properties

Modulus: \(464\)
Conductor: \(116\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(28\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{116}(19,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 464.bl

\(\chi_{464}(15,\cdot)\) \(\chi_{464}(31,\cdot)\) \(\chi_{464}(47,\cdot)\) \(\chi_{464}(79,\cdot)\) \(\chi_{464}(95,\cdot)\) \(\chi_{464}(127,\cdot)\) \(\chi_{464}(143,\cdot)\) \(\chi_{464}(159,\cdot)\) \(\chi_{464}(271,\cdot)\) \(\chi_{464}(287,\cdot)\) \(\chi_{464}(351,\cdot)\) \(\chi_{464}(367,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{28})\)
Fixed field: \(\Q(\zeta_{116})^+\)

Values on generators

\((175,117,321)\) → \((-1,1,e\left(\frac{9}{28}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 464 }(367, a) \) \(1\)\(1\)\(e\left(\frac{3}{28}\right)\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{5}{14}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{15}{28}\right)\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{5}{28}\right)\)\(-i\)\(e\left(\frac{11}{28}\right)\)\(e\left(\frac{13}{28}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 464 }(367,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 464 }(367,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 464 }(367,·),\chi_{ 464 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 464 }(367,·)) \;\) at \(\; a,b = \) e.g. 1,2