Properties

Label 4650.269
Modulus 46504650
Conductor 23252325
Order 3030
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4650, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([15,27,29]))
 
pari: [g,chi] = znchar(Mod(269,4650))
 

Basic properties

Modulus: 46504650
Conductor: 23252325
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 3030
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ2325(269,)\chi_{2325}(269,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4650.ep

χ4650(269,)\chi_{4650}(269,\cdot) χ4650(1469,)\chi_{4650}(1469,\cdot) χ4650(2039,)\chi_{4650}(2039,\cdot) χ4650(3959,)\chi_{4650}(3959,\cdot) χ4650(4109,)\chi_{4650}(4109,\cdot) χ4650(4229,)\chi_{4650}(4229,\cdot) χ4650(4289,)\chi_{4650}(4289,\cdot) χ4650(4529,)\chi_{4650}(4529,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ15)\Q(\zeta_{15})
Fixed field: Number field defined by a degree 30 polynomial

Values on generators

(3101,2977,1801)(3101,2977,1801)(1,e(910),e(2930))(-1,e\left(\frac{9}{10}\right),e\left(\frac{29}{30}\right))

First values

aa 1-11177111113131717191923232929373741414343
χ4650(269,a) \chi_{ 4650 }(269, a) 1111e(1730)e\left(\frac{17}{30}\right)e(215)e\left(\frac{2}{15}\right)e(1115)e\left(\frac{11}{15}\right)e(2930)e\left(\frac{29}{30}\right)e(115)e\left(\frac{1}{15}\right)1-111e(415)e\left(\frac{4}{15}\right)e(1930)e\left(\frac{19}{30}\right)e(1315)e\left(\frac{13}{15}\right)
sage: chi.jacobi_sum(n)
 
χ4650(269,a)   \chi_{ 4650 }(269,a) \; at   a=\;a = e.g. 2