Properties

Label 4650.cx
Modulus 46504650
Conductor 3131
Order 1515
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4650, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,28]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(751,4650))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 46504650
Conductor: 3131
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1515
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 31.g
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ15)\Q(\zeta_{15})
Fixed field: Number field defined by a degree 15 polynomial

Characters in Galois orbit

Character 1-1 11 77 1111 1313 1717 1919 2323 2929 3737 4141 4343
χ4650(751,)\chi_{4650}(751,\cdot) 11 11 e(215)e\left(\frac{2}{15}\right) e(715)e\left(\frac{7}{15}\right) e(415)e\left(\frac{4}{15}\right) e(815)e\left(\frac{8}{15}\right) e(1115)e\left(\frac{11}{15}\right) e(15)e\left(\frac{1}{5}\right) e(25)e\left(\frac{2}{5}\right) e(13)e\left(\frac{1}{3}\right) e(115)e\left(\frac{1}{15}\right) e(1115)e\left(\frac{11}{15}\right)
χ4650(1051,)\chi_{4650}(1051,\cdot) 11 11 e(1415)e\left(\frac{14}{15}\right) e(415)e\left(\frac{4}{15}\right) e(1315)e\left(\frac{13}{15}\right) e(1115)e\left(\frac{11}{15}\right) e(215)e\left(\frac{2}{15}\right) e(25)e\left(\frac{2}{5}\right) e(45)e\left(\frac{4}{5}\right) e(13)e\left(\frac{1}{3}\right) e(715)e\left(\frac{7}{15}\right) e(215)e\left(\frac{2}{15}\right)
χ4650(1351,)\chi_{4650}(1351,\cdot) 11 11 e(415)e\left(\frac{4}{15}\right) e(1415)e\left(\frac{14}{15}\right) e(815)e\left(\frac{8}{15}\right) e(115)e\left(\frac{1}{15}\right) e(715)e\left(\frac{7}{15}\right) e(25)e\left(\frac{2}{5}\right) e(45)e\left(\frac{4}{5}\right) e(23)e\left(\frac{2}{3}\right) e(215)e\left(\frac{2}{15}\right) e(715)e\left(\frac{7}{15}\right)
χ4650(2251,)\chi_{4650}(2251,\cdot) 11 11 e(1115)e\left(\frac{11}{15}\right) e(115)e\left(\frac{1}{15}\right) e(715)e\left(\frac{7}{15}\right) e(1415)e\left(\frac{14}{15}\right) e(815)e\left(\frac{8}{15}\right) e(35)e\left(\frac{3}{5}\right) e(15)e\left(\frac{1}{5}\right) e(13)e\left(\frac{1}{3}\right) e(1315)e\left(\frac{13}{15}\right) e(815)e\left(\frac{8}{15}\right)
χ4650(2401,)\chi_{4650}(2401,\cdot) 11 11 e(815)e\left(\frac{8}{15}\right) e(1315)e\left(\frac{13}{15}\right) e(115)e\left(\frac{1}{15}\right) e(215)e\left(\frac{2}{15}\right) e(1415)e\left(\frac{14}{15}\right) e(45)e\left(\frac{4}{5}\right) e(35)e\left(\frac{3}{5}\right) e(13)e\left(\frac{1}{3}\right) e(415)e\left(\frac{4}{15}\right) e(1415)e\left(\frac{14}{15}\right)
χ4650(2551,)\chi_{4650}(2551,\cdot) 11 11 e(1315)e\left(\frac{13}{15}\right) e(815)e\left(\frac{8}{15}\right) e(1115)e\left(\frac{11}{15}\right) e(715)e\left(\frac{7}{15}\right) e(415)e\left(\frac{4}{15}\right) e(45)e\left(\frac{4}{5}\right) e(35)e\left(\frac{3}{5}\right) e(23)e\left(\frac{2}{3}\right) e(1415)e\left(\frac{14}{15}\right) e(415)e\left(\frac{4}{15}\right)
χ4650(3151,)\chi_{4650}(3151,\cdot) 11 11 e(715)e\left(\frac{7}{15}\right) e(215)e\left(\frac{2}{15}\right) e(1415)e\left(\frac{14}{15}\right) e(1315)e\left(\frac{13}{15}\right) e(115)e\left(\frac{1}{15}\right) e(15)e\left(\frac{1}{5}\right) e(25)e\left(\frac{2}{5}\right) e(23)e\left(\frac{2}{3}\right) e(1115)e\left(\frac{11}{15}\right) e(115)e\left(\frac{1}{15}\right)
χ4650(3451,)\chi_{4650}(3451,\cdot) 11 11 e(115)e\left(\frac{1}{15}\right) e(1115)e\left(\frac{11}{15}\right) e(215)e\left(\frac{2}{15}\right) e(415)e\left(\frac{4}{15}\right) e(1315)e\left(\frac{13}{15}\right) e(35)e\left(\frac{3}{5}\right) e(15)e\left(\frac{1}{5}\right) e(23)e\left(\frac{2}{3}\right) e(815)e\left(\frac{8}{15}\right) e(1315)e\left(\frac{13}{15}\right)