Properties

Label 4650.fx
Modulus 46504650
Conductor 23252325
Order 6060
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4650, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([30,33,52]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(173,4650))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 46504650
Conductor: 23252325
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 6060
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 2325.ga
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ60)\Q(\zeta_{60})
Fixed field: Number field defined by a degree 60 polynomial

Characters in Galois orbit

Character 1-1 11 77 1111 1313 1717 1919 2323 2929 3737 4141 4343
χ4650(173,)\chi_{4650}(173,\cdot) 11 11 e(160)e\left(\frac{1}{60}\right) e(730)e\left(\frac{7}{30}\right) e(5960)e\left(\frac{59}{60}\right) e(4360)e\left(\frac{43}{60}\right) e(1130)e\left(\frac{11}{30}\right) e(1920)e\left(\frac{19}{20}\right) e(25)e\left(\frac{2}{5}\right) e(3760)e\left(\frac{37}{60}\right) e(56)e\left(\frac{5}{6}\right) e(4360)e\left(\frac{43}{60}\right)
χ4650(317,)\chi_{4650}(317,\cdot) 11 11 e(2360)e\left(\frac{23}{60}\right) e(1130)e\left(\frac{11}{30}\right) e(3760)e\left(\frac{37}{60}\right) e(2960)e\left(\frac{29}{60}\right) e(1330)e\left(\frac{13}{30}\right) e(1720)e\left(\frac{17}{20}\right) e(15)e\left(\frac{1}{5}\right) e(1160)e\left(\frac{11}{60}\right) e(16)e\left(\frac{1}{6}\right) e(2960)e\left(\frac{29}{60}\right)
χ4650(413,)\chi_{4650}(413,\cdot) 11 11 e(4960)e\left(\frac{49}{60}\right) e(1330)e\left(\frac{13}{30}\right) e(1160)e\left(\frac{11}{60}\right) e(760)e\left(\frac{7}{60}\right) e(2930)e\left(\frac{29}{30}\right) e(1120)e\left(\frac{11}{20}\right) e(35)e\left(\frac{3}{5}\right) e(1360)e\left(\frac{13}{60}\right) e(56)e\left(\frac{5}{6}\right) e(760)e\left(\frac{7}{60}\right)
χ4650(887,)\chi_{4650}(887,\cdot) 11 11 e(5960)e\left(\frac{59}{60}\right) e(2330)e\left(\frac{23}{30}\right) e(160)e\left(\frac{1}{60}\right) e(1760)e\left(\frac{17}{60}\right) e(1930)e\left(\frac{19}{30}\right) e(120)e\left(\frac{1}{20}\right) e(35)e\left(\frac{3}{5}\right) e(2360)e\left(\frac{23}{60}\right) e(16)e\left(\frac{1}{6}\right) e(1760)e\left(\frac{17}{60}\right)
χ4650(1433,)\chi_{4650}(1433,\cdot) 11 11 e(5360)e\left(\frac{53}{60}\right) e(1130)e\left(\frac{11}{30}\right) e(760)e\left(\frac{7}{60}\right) e(5960)e\left(\frac{59}{60}\right) e(1330)e\left(\frac{13}{30}\right) e(720)e\left(\frac{7}{20}\right) e(15)e\left(\frac{1}{5}\right) e(4160)e\left(\frac{41}{60}\right) e(16)e\left(\frac{1}{6}\right) e(5960)e\left(\frac{59}{60}\right)
χ4650(2087,)\chi_{4650}(2087,\cdot) 11 11 e(1960)e\left(\frac{19}{60}\right) e(1330)e\left(\frac{13}{30}\right) e(4160)e\left(\frac{41}{60}\right) e(3760)e\left(\frac{37}{60}\right) e(2930)e\left(\frac{29}{30}\right) e(120)e\left(\frac{1}{20}\right) e(35)e\left(\frac{3}{5}\right) e(4360)e\left(\frac{43}{60}\right) e(56)e\left(\frac{5}{6}\right) e(3760)e\left(\frac{37}{60}\right)
χ4650(2153,)\chi_{4650}(2153,\cdot) 11 11 e(1760)e\left(\frac{17}{60}\right) e(2930)e\left(\frac{29}{30}\right) e(4360)e\left(\frac{43}{60}\right) e(1160)e\left(\frac{11}{60}\right) e(730)e\left(\frac{7}{30}\right) e(320)e\left(\frac{3}{20}\right) e(45)e\left(\frac{4}{5}\right) e(2960)e\left(\frac{29}{60}\right) e(16)e\left(\frac{1}{6}\right) e(1160)e\left(\frac{11}{60}\right)
χ4650(2303,)\chi_{4650}(2303,\cdot) 11 11 e(3760)e\left(\frac{37}{60}\right) e(1930)e\left(\frac{19}{30}\right) e(2360)e\left(\frac{23}{60}\right) e(3160)e\left(\frac{31}{60}\right) e(1730)e\left(\frac{17}{30}\right) e(320)e\left(\frac{3}{20}\right) e(45)e\left(\frac{4}{5}\right) e(4960)e\left(\frac{49}{60}\right) e(56)e\left(\frac{5}{6}\right) e(3160)e\left(\frac{31}{60}\right)
χ4650(2477,)\chi_{4650}(2477,\cdot) 11 11 e(1160)e\left(\frac{11}{60}\right) e(1730)e\left(\frac{17}{30}\right) e(4960)e\left(\frac{49}{60}\right) e(5360)e\left(\frac{53}{60}\right) e(130)e\left(\frac{1}{30}\right) e(920)e\left(\frac{9}{20}\right) e(25)e\left(\frac{2}{5}\right) e(4760)e\left(\frac{47}{60}\right) e(16)e\left(\frac{1}{6}\right) e(5360)e\left(\frac{53}{60}\right)
χ4650(2717,)\chi_{4650}(2717,\cdot) 11 11 e(4360)e\left(\frac{43}{60}\right) e(130)e\left(\frac{1}{30}\right) e(1760)e\left(\frac{17}{60}\right) e(4960)e\left(\frac{49}{60}\right) e(2330)e\left(\frac{23}{30}\right) e(1720)e\left(\frac{17}{20}\right) e(15)e\left(\frac{1}{5}\right) e(3160)e\left(\frac{31}{60}\right) e(56)e\left(\frac{5}{6}\right) e(4960)e\left(\frac{49}{60}\right)
χ4650(2777,)\chi_{4650}(2777,\cdot) 11 11 e(3160)e\left(\frac{31}{60}\right) e(730)e\left(\frac{7}{30}\right) e(2960)e\left(\frac{29}{60}\right) e(1360)e\left(\frac{13}{60}\right) e(1130)e\left(\frac{11}{30}\right) e(920)e\left(\frac{9}{20}\right) e(25)e\left(\frac{2}{5}\right) e(760)e\left(\frac{7}{60}\right) e(56)e\left(\frac{5}{6}\right) e(1360)e\left(\frac{13}{60}\right)
χ4650(2897,)\chi_{4650}(2897,\cdot) 11 11 e(4760)e\left(\frac{47}{60}\right) e(2930)e\left(\frac{29}{30}\right) e(1360)e\left(\frac{13}{60}\right) e(4160)e\left(\frac{41}{60}\right) e(730)e\left(\frac{7}{30}\right) e(1320)e\left(\frac{13}{20}\right) e(45)e\left(\frac{4}{5}\right) e(5960)e\left(\frac{59}{60}\right) e(16)e\left(\frac{1}{6}\right) e(4160)e\left(\frac{41}{60}\right)
χ4650(3047,)\chi_{4650}(3047,\cdot) 11 11 e(760)e\left(\frac{7}{60}\right) e(1930)e\left(\frac{19}{30}\right) e(5360)e\left(\frac{53}{60}\right) e(160)e\left(\frac{1}{60}\right) e(1730)e\left(\frac{17}{30}\right) e(1320)e\left(\frac{13}{20}\right) e(45)e\left(\frac{4}{5}\right) e(1960)e\left(\frac{19}{60}\right) e(56)e\left(\frac{5}{6}\right) e(160)e\left(\frac{1}{60}\right)
χ4650(3833,)\chi_{4650}(3833,\cdot) 11 11 e(1360)e\left(\frac{13}{60}\right) e(130)e\left(\frac{1}{30}\right) e(4760)e\left(\frac{47}{60}\right) e(1960)e\left(\frac{19}{60}\right) e(2330)e\left(\frac{23}{30}\right) e(720)e\left(\frac{7}{20}\right) e(15)e\left(\frac{1}{5}\right) e(160)e\left(\frac{1}{60}\right) e(56)e\left(\frac{5}{6}\right) e(1960)e\left(\frac{19}{60}\right)
χ4650(3863,)\chi_{4650}(3863,\cdot) 11 11 e(2960)e\left(\frac{29}{60}\right) e(2330)e\left(\frac{23}{30}\right) e(3160)e\left(\frac{31}{60}\right) e(4760)e\left(\frac{47}{60}\right) e(1930)e\left(\frac{19}{30}\right) e(1120)e\left(\frac{11}{20}\right) e(35)e\left(\frac{3}{5}\right) e(5360)e\left(\frac{53}{60}\right) e(16)e\left(\frac{1}{6}\right) e(4760)e\left(\frac{47}{60}\right)
χ4650(4523,)\chi_{4650}(4523,\cdot) 11 11 e(4160)e\left(\frac{41}{60}\right) e(1730)e\left(\frac{17}{30}\right) e(1960)e\left(\frac{19}{60}\right) e(2360)e\left(\frac{23}{60}\right) e(130)e\left(\frac{1}{30}\right) e(1920)e\left(\frac{19}{20}\right) e(25)e\left(\frac{2}{5}\right) e(1760)e\left(\frac{17}{60}\right) e(16)e\left(\frac{1}{6}\right) e(2360)e\left(\frac{23}{60}\right)