Properties

Label 4655.3946
Modulus 46554655
Conductor 931931
Order 126126
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4655, base_ring=CyclotomicField(126))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,51,35]))
 
pari: [g,chi] = znchar(Mod(3946,4655))
 

Basic properties

Modulus: 46554655
Conductor: 931931
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 126126
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ931(222,)\chi_{931}(222,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4655.go

χ4655(136,)\chi_{4655}(136,\cdot) χ4655(376,)\chi_{4655}(376,\cdot) χ4655(451,)\chi_{4655}(451,\cdot) χ4655(591,)\chi_{4655}(591,\cdot) χ4655(621,)\chi_{4655}(621,\cdot) χ4655(801,)\chi_{4655}(801,\cdot) χ4655(1041,)\chi_{4655}(1041,\cdot) χ4655(1116,)\chi_{4655}(1116,\cdot) χ4655(1286,)\chi_{4655}(1286,\cdot) χ4655(1321,)\chi_{4655}(1321,\cdot) χ4655(1466,)\chi_{4655}(1466,\cdot) χ4655(1706,)\chi_{4655}(1706,\cdot) χ4655(1781,)\chi_{4655}(1781,\cdot) χ4655(1921,)\chi_{4655}(1921,\cdot) χ4655(1951,)\chi_{4655}(1951,\cdot) χ4655(1986,)\chi_{4655}(1986,\cdot) χ4655(2131,)\chi_{4655}(2131,\cdot) χ4655(2446,)\chi_{4655}(2446,\cdot) χ4655(2586,)\chi_{4655}(2586,\cdot) χ4655(2651,)\chi_{4655}(2651,\cdot) χ4655(2796,)\chi_{4655}(2796,\cdot) χ4655(3036,)\chi_{4655}(3036,\cdot) χ4655(3111,)\chi_{4655}(3111,\cdot) χ4655(3251,)\chi_{4655}(3251,\cdot) χ4655(3281,)\chi_{4655}(3281,\cdot) χ4655(3316,)\chi_{4655}(3316,\cdot) χ4655(3701,)\chi_{4655}(3701,\cdot) χ4655(3776,)\chi_{4655}(3776,\cdot) χ4655(3916,)\chi_{4655}(3916,\cdot) χ4655(3946,)\chi_{4655}(3946,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ63)\Q(\zeta_{63})
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

(932,3041,2206)(932,3041,2206)(1,e(1742),e(518))(1,e\left(\frac{17}{42}\right),e\left(\frac{5}{18}\right))

First values

aa 1-1112233446688991111121213131616
χ4655(3946,a) \chi_{ 4655 }(3946, a) 1111e(101126)e\left(\frac{101}{126}\right)e(163)e\left(\frac{1}{63}\right)e(3863)e\left(\frac{38}{63}\right)e(103126)e\left(\frac{103}{126}\right)e(1742)e\left(\frac{17}{42}\right)e(263)e\left(\frac{2}{63}\right)e(1121)e\left(\frac{11}{21}\right)e(1321)e\left(\frac{13}{21}\right)e(4763)e\left(\frac{47}{63}\right)e(1363)e\left(\frac{13}{63}\right)
sage: chi.jacobi_sum(n)
 
χ4655(3946,a)   \chi_{ 4655 }(3946,a) \; at   a=\;a = e.g. 2