from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4655, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([0,51,35]))
pari: [g,chi] = znchar(Mod(3946,4655))
χ4655(136,⋅)
χ4655(376,⋅)
χ4655(451,⋅)
χ4655(591,⋅)
χ4655(621,⋅)
χ4655(801,⋅)
χ4655(1041,⋅)
χ4655(1116,⋅)
χ4655(1286,⋅)
χ4655(1321,⋅)
χ4655(1466,⋅)
χ4655(1706,⋅)
χ4655(1781,⋅)
χ4655(1921,⋅)
χ4655(1951,⋅)
χ4655(1986,⋅)
χ4655(2131,⋅)
χ4655(2446,⋅)
χ4655(2586,⋅)
χ4655(2651,⋅)
χ4655(2796,⋅)
χ4655(3036,⋅)
χ4655(3111,⋅)
χ4655(3251,⋅)
χ4655(3281,⋅)
χ4655(3316,⋅)
χ4655(3701,⋅)
χ4655(3776,⋅)
χ4655(3916,⋅)
χ4655(3946,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(932,3041,2206) → (1,e(4217),e(185))
a |
−1 | 1 | 2 | 3 | 4 | 6 | 8 | 9 | 11 | 12 | 13 | 16 |
χ4655(3946,a) |
1 | 1 | e(126101) | e(631) | e(6338) | e(126103) | e(4217) | e(632) | e(2111) | e(2113) | e(6347) | e(6313) |