Properties

Label 4655.3981
Modulus $4655$
Conductor $931$
Order $126$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4655, base_ring=CyclotomicField(126))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,33,119]))
 
pari: [g,chi] = znchar(Mod(3981,4655))
 

Basic properties

Modulus: \(4655\)
Conductor: \(931\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(126\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{931}(257,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4655.go

\(\chi_{4655}(136,\cdot)\) \(\chi_{4655}(376,\cdot)\) \(\chi_{4655}(451,\cdot)\) \(\chi_{4655}(591,\cdot)\) \(\chi_{4655}(621,\cdot)\) \(\chi_{4655}(801,\cdot)\) \(\chi_{4655}(1041,\cdot)\) \(\chi_{4655}(1116,\cdot)\) \(\chi_{4655}(1286,\cdot)\) \(\chi_{4655}(1321,\cdot)\) \(\chi_{4655}(1466,\cdot)\) \(\chi_{4655}(1706,\cdot)\) \(\chi_{4655}(1781,\cdot)\) \(\chi_{4655}(1921,\cdot)\) \(\chi_{4655}(1951,\cdot)\) \(\chi_{4655}(1986,\cdot)\) \(\chi_{4655}(2131,\cdot)\) \(\chi_{4655}(2446,\cdot)\) \(\chi_{4655}(2586,\cdot)\) \(\chi_{4655}(2651,\cdot)\) \(\chi_{4655}(2796,\cdot)\) \(\chi_{4655}(3036,\cdot)\) \(\chi_{4655}(3111,\cdot)\) \(\chi_{4655}(3251,\cdot)\) \(\chi_{4655}(3281,\cdot)\) \(\chi_{4655}(3316,\cdot)\) \(\chi_{4655}(3701,\cdot)\) \(\chi_{4655}(3776,\cdot)\) \(\chi_{4655}(3916,\cdot)\) \(\chi_{4655}(3946,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

\((932,3041,2206)\) → \((1,e\left(\frac{11}{42}\right),e\left(\frac{17}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(8\)\(9\)\(11\)\(12\)\(13\)\(16\)
\( \chi_{ 4655 }(3981, a) \) \(1\)\(1\)\(e\left(\frac{95}{126}\right)\)\(e\left(\frac{34}{63}\right)\)\(e\left(\frac{32}{63}\right)\)\(e\left(\frac{37}{126}\right)\)\(e\left(\frac{11}{42}\right)\)\(e\left(\frac{5}{63}\right)\)\(e\left(\frac{17}{21}\right)\)\(e\left(\frac{1}{21}\right)\)\(e\left(\frac{23}{63}\right)\)\(e\left(\frac{1}{63}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4655 }(3981,a) \;\) at \(\;a = \) e.g. 2