Properties

Label 4655.4244
Modulus 46554655
Conductor 665665
Order 66
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4655, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([3,2,2]))
 
pari: [g,chi] = znchar(Mod(4244,4655))
 

Basic properties

Modulus: 46554655
Conductor: 665665
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 66
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ665(254,)\chi_{665}(254,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4655.t

χ4655(4134,)\chi_{4655}(4134,\cdot) χ4655(4244,)\chi_{4655}(4244,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: 6.6.39112590125.1

Values on generators

(932,3041,2206)(932,3041,2206)(1,e(13),e(13))(-1,e\left(\frac{1}{3}\right),e\left(\frac{1}{3}\right))

First values

aa 1-1112233446688991111121213131616
χ4655(4244,a) \chi_{ 4655 }(4244, a) 11111-1e(16)e\left(\frac{1}{6}\right)11e(23)e\left(\frac{2}{3}\right)1-1e(13)e\left(\frac{1}{3}\right)e(13)e\left(\frac{1}{3}\right)e(16)e\left(\frac{1}{6}\right)e(16)e\left(\frac{1}{6}\right)11
sage: chi.jacobi_sum(n)
 
χ4655(4244,a)   \chi_{ 4655 }(4244,a) \; at   a=\;a = e.g. 2