Properties

Label 4655.4244
Modulus $4655$
Conductor $665$
Order $6$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4655, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([3,2,2]))
 
pari: [g,chi] = znchar(Mod(4244,4655))
 

Basic properties

Modulus: \(4655\)
Conductor: \(665\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(6\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{665}(254,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4655.t

\(\chi_{4655}(4134,\cdot)\) \(\chi_{4655}(4244,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(\zeta_3)\)
Fixed field: 6.6.39112590125.1

Values on generators

\((932,3041,2206)\) → \((-1,e\left(\frac{1}{3}\right),e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(8\)\(9\)\(11\)\(12\)\(13\)\(16\)
\( \chi_{ 4655 }(4244, a) \) \(1\)\(1\)\(-1\)\(e\left(\frac{1}{6}\right)\)\(1\)\(e\left(\frac{2}{3}\right)\)\(-1\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{6}\right)\)\(1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4655 }(4244,a) \;\) at \(\;a = \) e.g. 2