from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4655, base_ring=CyclotomicField(6))
M = H._module
chi = DirichletCharacter(H, M([3,2,2]))
pari: [g,chi] = znchar(Mod(4244,4655))
Basic properties
Modulus: | ||
Conductor: | sage: chi.conductor()
pari: znconreyconductor(g,chi)
| |
Order: | sage: chi.multiplicative_order()
pari: charorder(g,chi)
| |
Real: | no | |
Primitive: | no, induced from | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 4655.t
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | |
Fixed field: | 6.6.39112590125.1 |
Values on generators
→
First values
sage: chi.jacobi_sum(n)