from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4655, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([63,48,70]))
pari: [g,chi] = znchar(Mod(74,4655))
χ4655(9,⋅)
χ4655(44,⋅)
χ4655(74,⋅)
χ4655(289,⋅)
χ4655(529,⋅)
χ4655(674,⋅)
χ4655(709,⋅)
χ4655(739,⋅)
χ4655(879,⋅)
χ4655(954,⋅)
χ4655(1339,⋅)
χ4655(1374,⋅)
χ4655(1404,⋅)
χ4655(1544,⋅)
χ4655(1619,⋅)
χ4655(1859,⋅)
χ4655(2004,⋅)
χ4655(2069,⋅)
χ4655(2209,⋅)
χ4655(2524,⋅)
χ4655(2669,⋅)
χ4655(2704,⋅)
χ4655(2734,⋅)
χ4655(2874,⋅)
χ4655(2949,⋅)
χ4655(3189,⋅)
χ4655(3334,⋅)
χ4655(3369,⋅)
χ4655(3539,⋅)
χ4655(3614,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(932,3041,2206) → (−1,e(218),e(95))
a |
−1 | 1 | 2 | 3 | 4 | 6 | 8 | 9 | 11 | 12 | 13 | 16 |
χ4655(74,a) |
1 | 1 | e(126121) | e(12613) | e(6358) | e(634) | e(4237) | e(6313) | e(2119) | e(421) | e(126107) | e(6353) |