Properties

Label 4655.74
Modulus 46554655
Conductor 46554655
Order 126126
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4655, base_ring=CyclotomicField(126))
 
M = H._module
 
chi = DirichletCharacter(H, M([63,48,70]))
 
pari: [g,chi] = znchar(Mod(74,4655))
 

Basic properties

Modulus: 46554655
Conductor: 46554655
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 126126
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4655.gk

χ4655(9,)\chi_{4655}(9,\cdot) χ4655(44,)\chi_{4655}(44,\cdot) χ4655(74,)\chi_{4655}(74,\cdot) χ4655(289,)\chi_{4655}(289,\cdot) χ4655(529,)\chi_{4655}(529,\cdot) χ4655(674,)\chi_{4655}(674,\cdot) χ4655(709,)\chi_{4655}(709,\cdot) χ4655(739,)\chi_{4655}(739,\cdot) χ4655(879,)\chi_{4655}(879,\cdot) χ4655(954,)\chi_{4655}(954,\cdot) χ4655(1339,)\chi_{4655}(1339,\cdot) χ4655(1374,)\chi_{4655}(1374,\cdot) χ4655(1404,)\chi_{4655}(1404,\cdot) χ4655(1544,)\chi_{4655}(1544,\cdot) χ4655(1619,)\chi_{4655}(1619,\cdot) χ4655(1859,)\chi_{4655}(1859,\cdot) χ4655(2004,)\chi_{4655}(2004,\cdot) χ4655(2069,)\chi_{4655}(2069,\cdot) χ4655(2209,)\chi_{4655}(2209,\cdot) χ4655(2524,)\chi_{4655}(2524,\cdot) χ4655(2669,)\chi_{4655}(2669,\cdot) χ4655(2704,)\chi_{4655}(2704,\cdot) χ4655(2734,)\chi_{4655}(2734,\cdot) χ4655(2874,)\chi_{4655}(2874,\cdot) χ4655(2949,)\chi_{4655}(2949,\cdot) χ4655(3189,)\chi_{4655}(3189,\cdot) χ4655(3334,)\chi_{4655}(3334,\cdot) χ4655(3369,)\chi_{4655}(3369,\cdot) χ4655(3539,)\chi_{4655}(3539,\cdot) χ4655(3614,)\chi_{4655}(3614,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ63)\Q(\zeta_{63})
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

(932,3041,2206)(932,3041,2206)(1,e(821),e(59))(-1,e\left(\frac{8}{21}\right),e\left(\frac{5}{9}\right))

First values

aa 1-1112233446688991111121213131616
χ4655(74,a) \chi_{ 4655 }(74, a) 1111e(121126)e\left(\frac{121}{126}\right)e(13126)e\left(\frac{13}{126}\right)e(5863)e\left(\frac{58}{63}\right)e(463)e\left(\frac{4}{63}\right)e(3742)e\left(\frac{37}{42}\right)e(1363)e\left(\frac{13}{63}\right)e(1921)e\left(\frac{19}{21}\right)e(142)e\left(\frac{1}{42}\right)e(107126)e\left(\frac{107}{126}\right)e(5363)e\left(\frac{53}{63}\right)
sage: chi.jacobi_sum(n)
 
χ4655(74,a)   \chi_{ 4655 }(74,a) \; at   a=\;a = e.g. 2