from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4675, base_ring=CyclotomicField(80))
M = H._module
chi = DirichletCharacter(H, M([52,48,75]))
pari: [g,chi] = znchar(Mod(1417,4675))
χ4675(48,⋅)
χ4675(317,⋅)
χ4675(388,⋅)
χ4675(487,⋅)
χ4675(598,⋅)
χ4675(658,⋅)
χ4675(753,⋅)
χ4675(938,⋅)
χ4675(1027,⋅)
χ4675(1302,⋅)
χ4675(1417,⋅)
χ4675(1423,⋅)
χ4675(1578,⋅)
χ4675(1587,⋅)
χ4675(1622,⋅)
χ4675(1763,⋅)
χ4675(1897,⋅)
χ4675(2128,⋅)
χ4675(2952,⋅)
χ4675(2953,⋅)
χ4675(3067,⋅)
χ4675(3133,⋅)
χ4675(3237,⋅)
χ4675(3342,⋅)
χ4675(3512,⋅)
χ4675(3547,⋅)
χ4675(3898,⋅)
χ4675(3958,⋅)
χ4675(4052,⋅)
χ4675(4238,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(4302,3401,3301) → (e(2013),e(53),e(1615))
a |
−1 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 12 | 13 | 14 |
χ4675(1417,a) |
1 | 1 | e(83) | e(8023) | −i | e(8053) | e(8061) | e(81) | e(4023) | e(803) | e(107) | e(8011) |