Properties

Label 4675.1417
Modulus 46754675
Conductor 46754675
Order 8080
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4675, base_ring=CyclotomicField(80))
 
M = H._module
 
chi = DirichletCharacter(H, M([52,48,75]))
 
pari: [g,chi] = znchar(Mod(1417,4675))
 

Basic properties

Modulus: 46754675
Conductor: 46754675
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 8080
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4675.jh

χ4675(48,)\chi_{4675}(48,\cdot) χ4675(317,)\chi_{4675}(317,\cdot) χ4675(388,)\chi_{4675}(388,\cdot) χ4675(487,)\chi_{4675}(487,\cdot) χ4675(598,)\chi_{4675}(598,\cdot) χ4675(658,)\chi_{4675}(658,\cdot) χ4675(753,)\chi_{4675}(753,\cdot) χ4675(938,)\chi_{4675}(938,\cdot) χ4675(1027,)\chi_{4675}(1027,\cdot) χ4675(1302,)\chi_{4675}(1302,\cdot) χ4675(1417,)\chi_{4675}(1417,\cdot) χ4675(1423,)\chi_{4675}(1423,\cdot) χ4675(1578,)\chi_{4675}(1578,\cdot) χ4675(1587,)\chi_{4675}(1587,\cdot) χ4675(1622,)\chi_{4675}(1622,\cdot) χ4675(1763,)\chi_{4675}(1763,\cdot) χ4675(1897,)\chi_{4675}(1897,\cdot) χ4675(2128,)\chi_{4675}(2128,\cdot) χ4675(2952,)\chi_{4675}(2952,\cdot) χ4675(2953,)\chi_{4675}(2953,\cdot) χ4675(3067,)\chi_{4675}(3067,\cdot) χ4675(3133,)\chi_{4675}(3133,\cdot) χ4675(3237,)\chi_{4675}(3237,\cdot) χ4675(3342,)\chi_{4675}(3342,\cdot) χ4675(3512,)\chi_{4675}(3512,\cdot) χ4675(3547,)\chi_{4675}(3547,\cdot) χ4675(3898,)\chi_{4675}(3898,\cdot) χ4675(3958,)\chi_{4675}(3958,\cdot) χ4675(4052,)\chi_{4675}(4052,\cdot) χ4675(4238,)\chi_{4675}(4238,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ80)\Q(\zeta_{80})
Fixed field: Number field defined by a degree 80 polynomial

Values on generators

(4302,3401,3301)(4302,3401,3301)(e(1320),e(35),e(1516))(e\left(\frac{13}{20}\right),e\left(\frac{3}{5}\right),e\left(\frac{15}{16}\right))

First values

aa 1-11122334466778899121213131414
χ4675(1417,a) \chi_{ 4675 }(1417, a) 1111e(38)e\left(\frac{3}{8}\right)e(2380)e\left(\frac{23}{80}\right)i-ie(5380)e\left(\frac{53}{80}\right)e(6180)e\left(\frac{61}{80}\right)e(18)e\left(\frac{1}{8}\right)e(2340)e\left(\frac{23}{40}\right)e(380)e\left(\frac{3}{80}\right)e(710)e\left(\frac{7}{10}\right)e(1180)e\left(\frac{11}{80}\right)
sage: chi.jacobi_sum(n)
 
χ4675(1417,a)   \chi_{ 4675 }(1417,a) \; at   a=\;a = e.g. 2