sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4675, base_ring=CyclotomicField(40))
M = H._module
chi = DirichletCharacter(H, M([8,24,5]))
pari:[g,chi] = znchar(Mod(2066,4675))
Modulus: | 4675 | |
Conductor: | 4675 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 40 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ4675(236,⋅)
χ4675(416,⋅)
χ4675(631,⋅)
χ4675(971,⋅)
χ4675(1181,⋅)
χ4675(1521,⋅)
χ4675(2066,⋅)
χ4675(2161,⋅)
χ4675(2616,⋅)
χ4675(2711,⋅)
χ4675(2831,⋅)
χ4675(3171,⋅)
χ4675(3381,⋅)
χ4675(3721,⋅)
χ4675(4361,⋅)
χ4675(4541,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(4302,3401,3301) → (e(51),e(53),e(81))
a |
−1 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 12 | 13 | 14 |
χ4675(2066,a) |
1 | 1 | e(2011) | e(4013) | e(101) | e(87) | e(4023) | e(2013) | e(2013) | e(4017) | e(109) | e(81) |
sage:chi.jacobi_sum(n)