Properties

Label 4675.251
Modulus 46754675
Conductor 187187
Order 2020
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4675, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,12,5]))
 
pari: [g,chi] = znchar(Mod(251,4675))
 

Basic properties

Modulus: 46754675
Conductor: 187187
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2020
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ187(64,)\chi_{187}(64,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4675.fv

χ4675(251,)\chi_{4675}(251,\cdot) χ4675(676,)\chi_{4675}(676,\cdot) χ4675(1126,)\chi_{4675}(1126,\cdot) χ4675(1951,)\chi_{4675}(1951,\cdot) χ4675(2401,)\chi_{4675}(2401,\cdot) χ4675(3226,)\chi_{4675}(3226,\cdot) χ4675(4101,)\chi_{4675}(4101,\cdot) χ4675(4526,)\chi_{4675}(4526,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ20)\Q(\zeta_{20})
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

(4302,3401,3301)(4302,3401,3301)(1,e(35),i)(1,e\left(\frac{3}{5}\right),i)

First values

aa 1-11122334466778899121213131414
χ4675(251,a) \chi_{ 4675 }(251, a) 1111e(110)e\left(\frac{1}{10}\right)e(120)e\left(\frac{1}{20}\right)e(15)e\left(\frac{1}{5}\right)e(320)e\left(\frac{3}{20}\right)e(1920)e\left(\frac{19}{20}\right)e(310)e\left(\frac{3}{10}\right)e(110)e\left(\frac{1}{10}\right)iie(35)e\left(\frac{3}{5}\right)e(120)e\left(\frac{1}{20}\right)
sage: chi.jacobi_sum(n)
 
χ4675(251,a)   \chi_{ 4675 }(251,a) \; at   a=\;a = e.g. 2