Properties

Label 4675.2891
Modulus 46754675
Conductor 275275
Order 55
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4675, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([2,6,0]))
 
pari: [g,chi] = znchar(Mod(2891,4675))
 

Basic properties

Modulus: 46754675
Conductor: 275275
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 55
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ275(141,)\chi_{275}(141,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4675.x

χ4675(511,)\chi_{4675}(511,\cdot) χ4675(2891,)\chi_{4675}(2891,\cdot) χ4675(3656,)\chi_{4675}(3656,\cdot) χ4675(3996,)\chi_{4675}(3996,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ5)\Q(\zeta_{5})
Fixed field: 5.5.5719140625.3

Values on generators

(4302,3401,3301)(4302,3401,3301)(e(15),e(35),1)(e\left(\frac{1}{5}\right),e\left(\frac{3}{5}\right),1)

First values

aa 1-11122334466778899121213131414
χ4675(2891,a) \chi_{ 4675 }(2891, a) 1111e(45)e\left(\frac{4}{5}\right)e(15)e\left(\frac{1}{5}\right)e(35)e\left(\frac{3}{5}\right)11e(15)e\left(\frac{1}{5}\right)e(25)e\left(\frac{2}{5}\right)e(25)e\left(\frac{2}{5}\right)e(45)e\left(\frac{4}{5}\right)e(25)e\left(\frac{2}{5}\right)11
sage: chi.jacobi_sum(n)
 
χ4675(2891,a)   \chi_{ 4675 }(2891,a) \; at   a=\;a = e.g. 2