from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4675, base_ring=CyclotomicField(40))
M = H._module
chi = DirichletCharacter(H, M([28,24,25]))
pari: [g,chi] = znchar(Mod(3034,4675))
Basic properties
Modulus: | \(4675\) | |
Conductor: | \(4675\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(40\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 4675.gx
\(\chi_{4675}(9,\cdot)\) \(\chi_{4675}(179,\cdot)\) \(\chi_{4675}(444,\cdot)\) \(\chi_{4675}(559,\cdot)\) \(\chi_{4675}(729,\cdot)\) \(\chi_{4675}(994,\cdot)\) \(\chi_{4675}(1039,\cdot)\) \(\chi_{4675}(1589,\cdot)\) \(\chi_{4675}(2484,\cdot)\) \(\chi_{4675}(2644,\cdot)\) \(\chi_{4675}(2654,\cdot)\) \(\chi_{4675}(3034,\cdot)\) \(\chi_{4675}(3194,\cdot)\) \(\chi_{4675}(3204,\cdot)\) \(\chi_{4675}(3239,\cdot)\) \(\chi_{4675}(3789,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{40})\) |
Fixed field: | Number field defined by a degree 40 polynomial |
Values on generators
\((4302,3401,3301)\) → \((e\left(\frac{7}{10}\right),e\left(\frac{3}{5}\right),e\left(\frac{5}{8}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(12\) | \(13\) | \(14\) |
\( \chi_{ 4675 }(3034, a) \) | \(1\) | \(1\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{13}{40}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{23}{40}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{17}{40}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{5}{8}\right)\) |
sage: chi.jacobi_sum(n)